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1 Conservation laws in E&M
Last semester we noted that charge is conserved, and we were able to write both
integral

dQ

dt
=

d

dt

Z
ρdτ = ¡

Z
~j ¢ n̂ dA

and di¤erential
∂ρ

∂t
+ ~r ¢~j = 0

equations to express charge conservation. Our next task is to do the same thing
with energy, momentum and angular momentum.

1.1 Conservation of energy in E&M

We have already found expressions for the energy stored in electric and magnetic
fields.The total energy in a volume V is

U =

Z

V

µ
1

2
ε0E

2 +
1

2

B2

µ0

¶
dτ

The work done by electromagnetic forces on a charge q moving through a dis-
placement d~l is

dW = q(~E + ~v £ ~B) ¢ d~l

= q
³

~E + ~v £ ~B
´

¢ ~v dt

= q ~E ¢ ~v dt

As usual, the magnetic force does no work. Thus the rate at which work is done
is

dW

dt
= q ~E ¢ ~v

Now consider a volume element with charge dq = ρdτ . The work done on this
charge is

dW

dt
= ρ~v ¢ ~E dτ = ~j ¢ ~E dτ

Now we sum up over the whole volume to find the total rate of doing work:

dW

dt
=

Z

V

~j ¢ ~E dτ

We can express this result in terms of the fields alone by using the Ampere-
Maxwell law for ~j :

~j =
1

µ0

~r £ ~B ¡ ε0
∂ ~E

∂t
(1)

1



Thus
dW

dt
=

Z

V

~E ¢
Ã

1

µ0

~r £ ~B ¡ ε0
∂ ~E

∂t

!
dτ

Now from the front cover:

~r ¢
³

~E £ ~B
´

= ~B ¢
³

~r £ ~E
´

¡ ~E ¢
³

~r £ ~B
´

The last term is what we have in our integrand, and we can use Faraday’s law
for ~r £ ~E to get:

~E ¢
³

~r £ ~B
´

= ~B ¢
Ã

¡∂ ~B

∂t

!
¡ ~r ¢

³
~E £ ~B

´

Then

dW

dt
= ¡

Z

V

"
1

µ0

~B ¢ ∂ ~B

∂t
+

1

µ0

~r ¢
³

~E £ ~B
´

+ ~E ¢ ε0
∂ ~E

∂t

#
dτ

Using the divergence theorem on the middle term, we have:

dW

dt
= ¡1

2

Z

V

·
1

µ0

∂

∂t

³
~B ¢ ~B

´
+ ε0

∂

∂t

³
~E ¢ ~E

´¸
dτ ¡

Z

S

1

µ0

³
~E £ ~B

´
¢ n̂ dA

Or, for a fixed volume V,

d

dt

1

2

Z µ
ε0E

2 +
B2

µ0

¶
dτ = ¡

Z

S

1

µ0

³
~E £ ~B

´
¢ n̂ dA ¡ dW

dt

= ¡
Z

S

1

µ0

³
~E £ ~B

´
¢ n̂ dA ¡

Z

V

~j ¢ ~E dτ (2)

This equation should be interpreted as follows:

rate of change of em energy stored in the volume = energy flow
into the volume - rate at which energy is converted to non-em forms
as the fields do work..

Remember that n̂ points outward from the volume. Mathematically:

dU

dt
= ¡

Z

s

~S ¢ n̂ dA ¡ dW

dt
(3)

where
~S =

1

µ0

³
~E £ ~B

´
(4)

is the Poynting vector that describes energy flow in the fields. Its units are
J/m2¢s. ~S ¢ n̂ is positive when energy flows out of the volume.

2



We can convert equation (2) to di¤erential form in the usual way, using the
divergence theorem.

Z

V

·
∂

∂t

1

2

µ
ε0E

2 +
B2

µ0

¶
+~j ¢ ~E + ~r ¢ 1

µ0

³
~E £ ~B

´¸
dτ = 0

for any volume V, so

∂

∂t

1

2

µ
ε0E

2 +
B2

µ0

¶
+~j ¢ ~E + ~r ¢ 1

µ0

³
~E £ ~B

´
= 0

or, equivalently,
∂uE M

∂t
+ ~r ¢ ~S = ¡~j ¢ ~E (5)

It is interesting at this point to consider energy flow in a simple circuit with
a battery and a resistor. The battery supplies energy to the circuit, and the
resistor converts that energy to non-electro-magnetic forms (primarily thermal
energy). So energy is transported from the battery to the resistor. But how?
First let’s look at the field configuration. There are both electric and magnetic
fields. After the switch is closed the battery quickly establishes the necessary
charge distribution to create the potential distribution and electric field that
drive current through the resistor. The current loop produces a magnetic field,
as shown in the diagram. Then there is a non-zero Poynting flux that transmits

energy across the empty space between the battery and the resistor.
¯̄
¯~S

¯̄
¯ is

greatest near (but not in ) the wires, where the fields are greatest.
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1.2 Conservation of momentum
1.2.1 Newton’s 3rd law in E&M

It is easy to show that Newton’s third law holds in electrostatics: The force on
charge A due to charge B is equal and opposite to the charge on B due to A¡
this comes directly from Coulomb’s law. But things get more interesting when
magnetic fields are involved. The current density due to a charge q moving
with speed ~v is

~j = ρ~v = qδ (~r ¡~rq (t))~v

and this current density produces a magnetic field according to the Biot-Savart
Law. Provided that v ¿ c, we may write

~B (~r) =
µ0

4π

Z ~j £ ~R

R3
dτ 0 where ~R = ~r ¡ ~r0

=
µ0

4π
q

Z
δ (~r ¡ ~rq (t))

~v £ ~R

R3
dτ

=
µ0

4π
q
~v £ ~R

R3
where ~R = ~r ¡ ~rq (t)

Now consider two charges moving at right angles, as shown:

Charge 1 produces a magnetic field ~B1 at the position of charge 2, with a
resulting force exerted on 2 by 1

~Fo n 2 by 1 = q2~v2 £ ~B1

that points downward. But the magnetic field produced by charge 2 is zero at
the (instantaneous) position of charge 1 because ~v £ ~R = 0, and so the force
exerted on 1 by 2 is zero. This result clearly violates Newtons’ third law. It
then appears that momentum is not conserved, as

d~p2

dt
= ~Fo n 2 by 1 ;

d~p1

dt
= ~Fon 1 by 2 = 0

But momentum conservation is one of the most fundamental principles in physics.
The problem is resolved by realising that there is momentum stored in the fields
that is also changing.

It should not surprise us that momentum is stored in the fields if energy is.
Consider a particle moving with velocity ~v. It has kinetic energy K = 1

2
mv2
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and momentum ~p = m~v. The ratio of the magnitudes is

K

j~pj =
v

2

Later this semester, we will see that as the particle’s speed approaches the speed
of light, the ratio becomes

K

j~pj = c

µ
γ ¡ 1

γ

¶
c

v
= c

Ã
1 ¡

r
1 ¡ v2

c2

! ³ c

v

´
! c as v ! c

We have been using a classical field model of electricity and magnetism, but we
could also model the fields using a particle picture. The photon is a massless
particle that travels at speed c, and so for the photon K/p = c. Thus we might
guess that for the EM field, the momentum flux is given by

~S

c
=

1

cµ0

³
~E £ ~B

´

and then the momentum density

~PEM =
f lux

c
=

~S

c2
= ε0

³
~E £ ~B

´
(6)

Our next task is to prove this conjecture.

1.2.2 The Maxwell Stress tensor

We begin by looking at the force per unit volume ~f in a system of charged
particles and fields. The charge in a volume dτ is dq = ρdτ, and then

~fdτ = d ~F = ρdτ
³

~E + ~v £ ~B
´

~f = ρ ~E +~j £ ~B

Now we use Maxwell’s equations to eliminate ρ and ~j :

ρ = ε0
~r ¢ ~E

and ~j from equation (1):

~f =
³
ε0

~r ¢ ~E
´

~E +

Ã
1

µ0

~r £ ~B ¡ ε0
∂ ~E

∂t

!
£ ~B

Let’s work on the last term. Remember: the order of the vectors in a cross
product matters!

∂

∂t

³
~E £ ~B

´
=

∂ ~E

∂t
£ ~B + ~E £ ∂ ~B

∂t

=
∂ ~E

∂t
£ ~B + ~E £

³
¡~r £ ~E

´
(Faraday’s law)
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Thus
∂ ~E

∂t
£ ~B =

∂

∂t

³
~E £ ~B

´
+ ~E £

³
~r £ ~E

´

Now we may expand the triple cross product, to get

h
~E £

³
~r £ ~E

´i
i

= εijkEjεklm
∂

∂xl
Em

= (δilδjm ¡ δimδjl) Ej
∂

∂xl
Em

= Ej
∂

∂xi
Ej ¡ Ej

∂

∂xj
Ei

=
1

2

∂

∂xi
E2 ¡

³
~E ¢ ~r

´
Ei

with a similar expansion for
³

~r £ ~B
´

£ ~B = ¡~B £
³

~r £ ~B
´

. Putting all this

back into ~f , we get

~f =
³
ε0

~r ¢ ~E
´

~E ¡ 1

µ0

·
1

2
~rB2 ¡

³
~B ¢ ~r

´
~B

¸
¡ ε0

·
1

2
~rE2 ¡

³
~E ¢ ~r

´
~E

¸
¡ ε0

∂

∂t

³
~E £ ~B

´

= ¡ε0
∂

∂t

³
~E £ ~B

´
¡ ~r

µ
B2

µ0

+ ε0E
2

¶

+ε0

h³
~r ¢ ~E

´
~E +

³
~E ¢ ~r

´
~E
i

+
1

µ0

h³
~B ¢ ~r

´
~B + ~B

³
~r ¢ ~B

´i

In the last line I added the term ~B
³

~r ¢ ~B
´

, which is identically zero, to make

the last two terms symmetrical in ~E and ~B. Tidying up a bit, we get

~f = ¡ε0µ0

∂ ~S

∂t
¡~ru+ε0

h³
~r ¢ ~E

´
~E +

³
~E ¢ ~r

´
~E
i
+

1

µ0

h³
~B ¢ ~r

´
~B + ~B

³
~r ¢ ~B

´i

The first term is, from equation (6),

¡ 1

c2

∂ ~S

∂t
= ¡∂ ~PEM

∂t

The remaining terms may be written as the divergence of a tensor Tij . A tensor
as a total of 3£3 = 9 components, labelled with the two indices i and j, each
of which ranges over the values 1-3, 1 = x, 2 = y, 3 = z. It is much easier to
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write equations in index notation when we have tensors. So

∂

∂xj
Tij = ¡ ∂

∂xi

·
ε0

E2

2
+

B2

µ0

¸
+ ε0

h³
~r ¢ ~E

´
Ei +

³
~E ¢ ~r

´
Ei

i
+

1

µ0

h³
~B ¢ ~r

´
Bi + Bi

³
~r ¢ ~B

´i

= ¡δij
∂

∂xj

·
ε0

E2

2
+

B2

µ0

¸
+ ε0

·
∂Ej

∂xj
Ei + Ej

∂

∂xj
Ei

¸
+

1

µ0

·
Bj

∂

∂xj
Bi + B i

∂Bj

∂xj

¸

= ¡δij
∂

∂xj

·
ε0

E2

2
+

B2

µ0

¸
+

∂

∂xj
(ε0EjEi) +

∂

∂xj

µ
1

µ0

BjBi

¶

=
∂

∂xj

·
¡δ ij

·
ε0

E2

2
+

B2

µ0

¸
+ ε0EjEi +

1

µ0

BjBi

¸
(7)

We may write the components conveniently as a matrix. The first term con-
tributes only when i = j, ie on the diagonal of the matrix.

Ã!
T =

0
BBBBBBB@

ε0

2

¡
E2

x ¡ E2
y ¡ E2

z

¢

+ 1
2µ0

¡
B2

x ¡ B2
y ¡ B2

z

¢ ε0ExEy + 1
µ0

BxBy ε0ExEz + 1
µ0

BxBz

ε0ExEy + 1
µ0

BxBy

ε0

2

¡
E2

y ¡ E2
x ¡ E2

z

¢

+ 1
2µ0

¡
B2

y ¡ B2
x ¡ B2

z

¢ ε0EyEz + 1
µ0

ByBz

ε0ExEz + 1
µ0

BxBz ε0EyEz + 1
µ0

ByBz

ε0
2

¡
E2

z ¡ E2
x ¡ E2

y

¢

+ 1
2µ0

¡
B2

z ¡ B2
x ¡ B2

y

¢

1
CCCCCCCA

(8)
Note that this tensor is symmetric, that is:

Tij = Tji

Finally we write the force density equation as:

fi = ¡∂ ~PE M , i

∂t
+

∂Tij

∂xj
(9)

and integrating over the volume:
Z

V

fidτ = ¡
Z

V

∂ ~PEM , i

∂t
dτ +

Z

V

∂Tij

∂xj
dτ

Using the divergence theorem, we convert the last term to a surface integral:

Fi = ¡
Z

V

∂ ~PEM , i

∂t
dτ +

Z

S

Tijnj dA (10)

or equivalently

~F = ¡ d

dt

Z
~PEM dτ +

Z

S

Ã!
T ¢ d ~A (11)

or
d

dt

Z
~PEM dτ =

Z

S

Ã!
T ¢ d ~A ¡ ~F

We may interpret this as:
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Rate of change of stored EM momentum in the volume=-force
exerted by fields in the volume on charges in the volume - force
exerted by fields in the volume on the surface of the volume.

The physical interpretation of the tensor component Tij is:

Tij is the force per unit area in the ith direction exerted on an
area element with normal in the jth direction.

The diagonal elements such as Txx are pressures (normal force per unit area)
while the o¤-diagonal components are shears.

Let’s see what happens to equation 11 when there is no time dependence.
We have

~F =

Z

S

Ã!
T ¢ d ~A

This means that we can calculate the force equally well by calculating the force
per unit volume, and integrating over the volume, or the force per unit area and
integrating over the area. For example, Suppose we have two point charges
separated by a distance D . The volume integral is just Coulomb’s law:

~F =
q1q2

4πε0D2
r̂

But we should be able to get the result by integrating over any surface com-
pletely surrounding one of the charges.We need the total electric field due to
both charges:

~E = ~E1 + ~E2 =
1

4πε0

µ
q1

r2
1

r̂1 +
q2

r2
2

r̂2

¶

Let’s put the x¡axis along the line joining the two charges, with the origin half
way between them.

The easiest surface to use is a rectangular box, with flat surfaces at x = 0,
x ! 1, y ! §1 and z ! §1. This box encloses charge 2, but if we choose

8



x ! ¡1, that box encloses charge 1. The fields go to zero fast enough that the
only non-zero contribution is from the surface at finite x. (The fields decrease
like 1/distance2, so the product of two field components goes like 1/distance4,
but the area only increases as distance2, so the product! 0 as 1/distance2. )
Since the box enclosing charge one has outward normal n̂ = x̂ while the box
enclosing charge 2 has outward normal n̂ = ¡x̂, we can see immediately that the
forces each charge exerts on the other are equal and opposite. Let’s calculate
the force on charge 2.

On the plane

~E =
1

4πε0

0
B@

q1³¡
D
2

¢2
+ y2 + z2

´3/2

µ
D

2
x̂ + yŷ + zẑ

¶
+

q2³¡
D
2

¢2
+ y2 + z2

´3/2

µ
¡D

2
x̂ + yŷ + zẑ

¶
1
CA

Fx = ¡
Z +1

¡1
dy

Z +1

¡1
dzTxx

= ¡
Z +1

¡1
dy

Z +1

¡1
dz

ε0

2

¡
E2

x ¡ E2
y ¡ E2

z

¢

= ¡
Z +1

¡1
dy

Z +1

¡1
dzε0

µ
E2

x ¡ E2

2

¶

= ¡ 1

(4π)2 ε0

Z +1

¡1
dy

Z +1

¡1
dz

0
B@

h
q1D/2

(D2/4+y2+z2)3/2 ¡ q2D/2

(D2/4+y2+z2)3/2

i2

¡ 1
2

h
q1r̂1

D2/4+y2+z2 + q1r̂2

D2/4+y2+z2

i2

1
CA

We may use polar coordinates on the plane, where y2 + z2 = s2

Z 2π

0

Z +1

0

sdsdθ
q2
1D

2/4

(D2/4 + s2)3
=

πq2
1D2

4

Z +1

D2/4

du

u3
where u =

D2

4
+ s2

=
πq2

1D2

4

µ
¡ 1

2u2

¶¯̄
¯̄
1

D2/4

=
2πq2

1

D2

and Z 2π

0

Z +1

0

sdsdθ
q2
1

(D2/4 + s2)
2

= πq2
1

µ
¡ 1

u2

¶¯̄
¯̄
1

D2/4

=
4πq2

1

D2

Thus the first term in each of the brackets sum to give

2πq2
1

D2
¡ 1

2

4πq2
1

D2
= 0

Of course we expect this because the result should involve only the product of
the two di¤erent charges. The same thing happens with the last term in each
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of the two brackets. Thus we are left with the cross terms.
Z 2π

0

Z +1

0

sdsdθ
¡q1q2D

2/2

(D2/4 + s2)3
= ¡πq1q2

D2

2

Z 1

D2/4

du

u3
where u =

D2

4
+ s2

= ¡πq1q2
D2

2

µ
¡ 1

2u2

¶¯̄
¯̄
1

D2/4

= ¡4π
q1q2

D2

and

Z 2π

0

Z +1

0

sdsdθ
2q1q2r̂1 ¢ r̂2

(D2/4 + s2)
2 =

Z 2π

0

Z +1

0

2sdsdθ
q1q2

¡
r2

y + r2
z ¡ r2

x

¢

(D2/4 + s2)
2
r2

= q1q2

Z 2π

0

Z +1

0

2sdsdθ

¡
s2 ¡ D2/4

¢

(D2/4 + s2)
3

= q1q2

Z 2π

0

Z +1

0

2sdsdθ

¡
s2 + D2/4 ¡ D2/2

¢

(D2/4 + s2)
3

= q1q2

Z 2π

0

Z +1

0

2sdsdθ

"
1

(D2/4 + s2)
2 ¡ D2/2

(D2/4 + s2)
3

#

We havre already done the second integral, so let’s work on the first:

Z 2π

0

Z +1

0

2sdsdθ
1

(D2/4 + s2)2
= 2π

Z 1

D2/4

1

u2
du =

8π

D2

Thus

Fx = ¡ q1q2

(4π)
2
ε0

µ
¡ 4π

D2
¡ 1

2

·
8π

D2
¡ 8π

D2

¸¶

=
q1q2

4πε0D2

as expected.
Finally let’s look at Fy .

Fy = ¡
Z +1

¡1
dy

Z +1

¡1
dzTyx

= ¡
Z +1

¡1
dy

Z +1

¡1
dzε0ExEy

= ¡ 1

(4π)
2
ε0

Z +1

¡1
dy

Z +1

¡1
dz

"
q1D/2

(D2/4 + y2 + z2)
3/2

¡ q2D/2

(D2/4 + y2 + z2)
3/2

#

£
"

q1y

(D2/4 + y2 + z2)
3/2

¡ q2y

(D2/4 + y2 + z2)
3/2

#
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The terms look like
Z +1

¡1
dy

Z +1

¡1
dz

q2
1yD/2

(D2/4 + y2 + z2)
3 = 0

because the integral over y has an odd integrand integrated over an even interval.
The cross terms are zero for the same reason.

Z +1

¡1
dy

Z +1

¡1
dz

q1q2yD/2

(D2/4 + y2 + z2)3
= 0

Thus the force only has an x¡component, as expected.

1.2.3 Conservation of momentum

Let’s return to the full force law (11), Since the force acting on the charges in
the volume changes their mechanical momentum, we may rewrite the equation
as:

d

dt

Z ³
~PEM + ~PM ech

´
dτ =

Z

S

Ã!
T ¢ d ~A

or, in di¤erential form,

∂

∂t

³
~PEM + ~PMech

´
= ~r ¢

Ã!
T (12)

1.3 Angular momentum
If the fields carry momentum, they must also carry angular momentum:

~̀EM = ~r £ ~PEM

= ε0~r £
³

~E £ ~B
´

As an example, consider a configuration of charges and currents as follows.

We have two concentric cylindrical shells of charge with radii a and c > a. The
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cylinders have equal but opposite charges, so the surface charge densities are σ
and ¡σc/a respectively. There is an electric field

~E =
σa

ε0s
ŝ

for c > s > a. A solenoid with radius b, c > b > a, carries azimuthal current I,
so a magnetic field

~B = µ0nIẑ

exists in the region s < b. Thus for a < s < b we have both electric and
magnetic fields.

~PEM = ε0
σa

ε0s
ŝ £ µ0nIẑ = ¡σa2

2s
µ0nIθ̂

and the angular momentum density about the origin is:

~̀
EM = ~r £

³
¡σa

s
µ0nIθ̂

´

= ¡σa

s
µ0nI (sŝ + zẑ) £ θ̂

= ¡σaµ0nI
³
ẑ ¡ z

s
ŝ
´

The total angular momentum contained in a cylinder of height h is

~LEM =

Z
~̀
EM dτ

=

Z h/2

¡h/2

dz

Z 2π

0

dφ

Z b

a

sds
n

σaµ0nI
³
ẑ ¡ z

s
ŝ
´o

= ¡πσaµ0nI
¡
b2 ¡ a2

¢
h ẑ

Now if we turn the current o¤, ~B ! 0 and ~LE M ! 0 also. Since there are no
external torques, ~L should be conserved. Aha, but the changing ~B produces an
azimuthal ~E, by Faraday’s law, and the resulting torque on the cylinders causes
them to rotate. We have

2πsEθ = ¡ d

dt
πs2B

Eθ = ¡ s

2
µ0n

dI

dt

and the torque on a height h of the cylinder of radius a < b is

~τ = aσ (2πah) Eθ ẑ

= ¡2πσa2h
a

2
µ0n

dI

dt
ẑ =

d~Lcy linder

dt

Thus the inner cylinder gains angular momentum:

~Linner =

Z t2

t1

d~Lcy linder

dt
dt = ¡πσa3hµ0n I jt2t1 ẑ

= πσa3hµ0nI ẑ
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The initial flux through a circle of radius c is πb2B, since B is zero for b < s < c,
so we have

Eθ (c) = ¡ b2

2c
µ0n

dI

dt

and, since the outer cylinder has a negative charge density,

~τ = 2π
³
σ

a

c

´
c2h

b2

2c
µ0n

dI

dt
ẑ

giving
~Louter = ¡πachb2µ0nI ẑ

The total angular momentum gained by the two cylinders is

~Lm ech = ¡πσaµ0nIhẑ
¡
b2 ¡ a2

¢
ẑ = ~LEM

The total electromagnetic angular momentum that disappears exactly equals
the total mechanical angular momentum gained by the cylinders. Angular
momentum is conserved.
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