
Separation of variables
The idea here is to try to find a solution to Laplace’s equation that is a

product of functions, each of which depends on only one of the variables. We
start with a 2-D problem in Cartesian coordinates. Then we look for a solution
of the form

V (x, y) = X (x)Y (y)

where
∂2V

∂x2
+

∂2V

∂y2
=

∂2X

∂x2
Y + X

∂2Y

∂y2
= 0

Now divide the whole equation by V = XY, and we have

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
= 0 (1)

Here the first term is a function of x but not y and the second is a function
of y but not x. The equation must be satisfied for all values of x and y in our
region. Suppose we have satisfied the equation at some point x0, y0. If we move
along a line at constant x = x0 while changing y, we could change the value of
the second term but leave the first unchanged. Thus the equation would not
be satisfied at x = x0, y 6= y0 unless the second term were constant. Thus we
must have

1

Y

∂2Y

∂y2
= k

where k is a constant, and then we must also have

1

X

∂2X

∂x2
= ¡k

so that equation (1) remains satisfied. We have replaced one, linear, second
order partial di¤erential equation with two, coupled, linear, ordinary, second
order di¤erential equations. Both ordinary di¤erential equations are of the form

d2w

du2
= Cw (2)

where C = §k. If C is positive, C = β2, then the solution is an exponential
function

w = Aeβu + Be¡βu (3)

while if C is negative, C = ¡α2, the solution is a combination of sine and cosine:

w = A sin (αu) + B cos (αu) (4)

Here is where the boundary conditions become important. There are several
di¤erences between the solutions (3) and (4). The sines and cosines in (4) are
periodic and take the value zero twice every period. On the other hand the
exponential functions in (3) are not periodic and do not take the value zero
anywhere. (We can form the linear combination w = sinh αu = 1

2
(eαu ¡ e¡αu)
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that is zero at one, and only one, point u = 0.) One exponential function (eβu)
is unbounded as u ! 1; all the other functions remain bounded. Further, we
know that any reasonably well-behaved function on the range 0 · u · 2π may
be expanded in a Fourier series

f (u) =

1X

n=0

an sin nu + bn cos nu

(This property of sines and cosines is called "completeness".) We can use these
properties to figure out what the solution must be.

We start with a region that is a rectangular box measuring a£ b. Its length
in the third dimension is either infinite or zero. We put the x and y¡axes along
the two finite sides of the box. Then the potential is independent of z. Now
suppose the sides at x = 0 and x = a and at y = 0 are all grounded, but the
potential on the side at y = b is non-zero V (x, b) = V0 (x) .

Since the potential is zero at two values of x, we must choose the periodic
functions as the apropriate solutions for X. That means that we need k to be
positive, k = α2. Further, if the solution is zero at x = 0, the correct solution
is the sine. Then we have

X (x) = sin (αx) = 0 at x = 0

Now to make the solution zero at x = a, we need

sin αa = 0 = sin nπ ) α =
nπ

a

for any integer n. Then the equation for Y becomes

1

Y

∂2Y

∂y2
= k = α2

with solution
Y = Aeαy + Be¡αy

Notice that since we chose k to be positive, one set of solutions (here X) are sines
and cosines while the other set (Y ) are exponentials. This is forced upon us
because the sum of the two constants must be zero so that the partial di¤erential
equation is satisfied. It is never possible for both sets of functions to be sines
and cosines.

Now we take the other surface on which V = 0 and make our solution satisfy
that boundary condition. At y = 0 we have

A + B = 0 ) B = ¡A

and then
Y = A

¡
eαy ¡ e¡αy

¢
= 2A sinh αy = 2A sinh

nπy

a

So far we have a solution

X Y = sinh
nπy

a
sin

nπx

a
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This function satisfies the di¤erential equation and the boundary conditions on
3 of the four sides of the box. This is a solution to the di¤erential equation, not
the solution to the problem, because it does not satisfy the remaining boundary
condition at y = b. But we can have any integer value for n. Thus the solution
we need is a linear combination of such functions with di¤erent values of n :

V (x, y) =

1X

n=1

An sinh
nπy

a
sin

nπx

a

We have one boundary condition to go. On the side at y = b :

V (x, b) =

1X

n=1

An sinh
nπb

a
sin

nπx

a
= V0 (x) (5)

Thus

An sinh
nπb

a

is the coe¢cient in the Fourier sine series for V0 (x). Now we proceed using the
usual method for finding the coe¢cients in a Fourier series. We use a property
of the sines called orthogonality:

Z a

0

sin
nπx

a
sin

mπx

a
dx =

½
0 if n 6= m
a
2 if n = m

(6)

So we multiply both sides of equation (5) by sinmπx/a and integrate from 0 to
a. Z a

0

1X

n=1

An sinh
nπb

a
sin

nπx

a
sin

mπx

a
dx =

Z a

0

V0 (x) sin
mπx

a
dx

We interchange the sum and the integral on the left. (This is legal. See Lea
Ch 6 for the reasons why.)

1X

n=1

An sinh
nπb

a

Z a

0

sin
nπx

a
sin

mπx

a
dx =

Z a

0

V0 (x) sin
mπx

a
dx

and use result (6). The integral on the left is zero unless n = m. But since the
sum is over all n, one of the values will be m, and that is the only value that
gives a non-zero result. Thus the infinite sum reduces to one term:

1X

n=1

An sinh
nπb

a

Z a

0

sin
nπx

a
sin

mπx

a
dx =

m¡1X

n=1

An sinh
nπb

a
£ 0 + Am sinh

mπb

a
£ a

2
+

1X

n=m+1

An sinh
n

a

= Am sinh
mπb

a
£ a

2

Thus µ
Am sinh

mπb

a

¶
a

2
=

Z a

0

V0 (x) sin
mπx

a
dx (7)
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In principle we are done, but to get values for the coe¢cients Am we’ll need a
specific function V0 (x) .

Suppose our box has insulating strips at x = 0, y = b and at x = a/2, y = b
with the potential V0 (x) = V0 for 0 < x < a/2 and zero for a/2 < x < a. then

Z a

0

V0 (x) sin
mπx

a
dx =

Z a/2

0

V0 sin
mπx

a
dx +

Z a

a/2

0 £ sin
mπx

a
dx

= V0
¡a

mπ
cos

mπx

a

¯̄
¯̄
a/2

0

+ 0

= V0
a

mπ

³
1 ¡ cos

mπ

2

´
(8)

Then, combining (8) and (7), we have

Am = 2V0
1 ¡ cosmπ/2

mπ sinh mπb/a

So

V (x, y) = 2V0

1X

m=1

1 ¡ cosmπ/2

mπ sinh mπb/a
sin

mπx

a
sinh

mπy

a

Now

cos
mπ

2
=

8
<
:

0 if m is odd
1 if m = 2p and p is even

¡1 if m = 2p and p is odd

So the first few terms are

V (x, y) =
2V0

π

Ã
sin

πx

a

sinh πy
a

sinh πb
a

+ sin
2πx

a

sinh 2πy
a

sinh 2πb
a

+
1

3
sin

3πx

a

sinh 3πy
a

sinh 3πb
a

+
1

5
sin

5πx

a

sinh 5πy
a

sinh 5πb
a

+ ¢ ¢ ¢
!

With b = a/2 :

V (x, y) =
2V0

π

Ã
sin

πx

a

sinh πy
a

sinh π
2

+ sin
2πx

a

sinh 2πy
a

sinh π
+

1

3
sin

3πx

a

sinh 3πy
a

sinh 3π
2

+
1

5
sin

5πx

a

sinh 5πy
a

sinh 5π
2

+ ¢ ¢ ¢
!

Terms up to m = 5

0.5

1

0.5
y

0.5

1

x
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m = 10

0.5

1

0.2
0.4y

0.4
0.6

0.8
1

x

m = 20

0.5

1

0.4

y

0.4
0.6

0.8
1

x

We can see the correct boundary conditions appearing as we increase m. The
series converges well if y ¿ b, but convergence gets slower as y ! b. This is a
characterisic of these types of solutions.

Solution in three dimensions.
In 3-d Laplace’s equation is

r2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0

and now we look for a separated solution of the form

V = X (x)Y (y)Z (z)

Stu¢ng in, we get

∂2X

∂x2
Y Z + X

∂2Y

∂y2
Z + XY

∂2Z

∂z2
= 0
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and dividing by XY Z, we have

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
= 0 (9)

We have succeeded in separating the equation into three terms, each of which
depends on only one of the three variables x,y and z. So again we can imag-
ine moving along a line with constant x and y, letting only z change. This
would change the third term Z 00/Z without changing the other two, disturbing
the equality. We must prohibit this possibility by requiring this term to be a
constant.

1

Z

∂2Z

∂z2
= k1

We can make the same argument about the second term by moving along a line
with x and z constant and only y varying. Thus

1

Y

∂2Y

∂y2
= k2

Inserting these values back into the di¤erential equation (9), we have

1

X

∂2X

∂x2
= ¡k1 ¡ k2 = k3

All three of our equations are now of the form (2) with solutions of the form (3)
or (4).

To see how the solution goes, let’s consider an infinite slot that extends from
x = 0 out to infinity, from y = 0 to y = a, and from z = 0 to z = b. Suppose
that the surface at x = 0 is a uniformly charged sheet, with charge density σ.
There are narrow insulating strips at the edges, and the other four surfaces at
y = 0, a and z = 0, b are grounded conductors.

As before we start with one of the coordinates that has two boundary con-
ditions that are zeros. So let’s start with y. We need a function that is zero at
two places: y = 0 and y = a. So we must choose a sine (because sin αy = 0
when y = 0) and then we must force another zero of the sine function to be at
y = a by picking α = nπ/a. That makes our constant k2 = ¡α2 = ¡ (nπ/a)2 .

Y = sin
nπy

a

Now we do something similar with the function of z. Again we need the
sine, with the constant chosen to make the function zero again at z = b. Thus
k1 = ¡ (mπ/b)

2 and

Z = sin
³mπz

b

´

Now we have the equation for X : it is

1

X

∂2X

∂x2
= ¡k1 ¡ k2 = ¡

·
¡

³nπ

a

´2

¡
³ mπ

b

´2
¸

= +
³ nπ

a

´2

+
³ mπ

b

´2
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The constant k3 must be positive because both k1 and k2 are negative. The sum
of all three constants has to be zero. That means that our solutions for x have
to be exponentials. We have two more boundary conditions to satisfy. The first
is that X ! 0 as x ! 1, and this means we need the negative exponential:

X = exp

"
¡

r³nπ

a

´2

+
³mπ

b

´2

x

#

Finally, we have to match our solution to the charge density σ at x = 0. The
charge sits on a thin insulator, on top of a conductor. That allows us to make
the charge density anything we like, with zero field on the other (x < 0) side in
the conductor. Then we need

E? =
σ

ε0
=

∂V

∂X

¯̄
¯̄
x=0

=
∂X

∂X

¯̄
¯̄
x=0

Y Z

As before, single values of n and m will not do this for us, and we will need a
linear combination. This time it is a double sum over both n and m.

V (x, y, z) =

1X

n=1

1X

m=1

Anm exp

"
¡

r³ nπ

a

´2

+
³mπ

b

´2

x

#
sin

nπy

a
sin

³ mπz

b

´

with the boundary condition

σ

ε0
=

1X

n=1

1X

m=1

¡
r³nπ

a

´2

+
³mπ

b

´2

Anm exp

"
¡

r³nπ

a

´2

+
³ mπ

b

´2

x

#¯̄
¯̄
¯
x=0

sin
nπy

a
sin

³ mπz

b

´

=

1X

n=1

1X

m=1

¡
r³nπ

a

´2

+
³mπ

b

´2

Anm sin
nπy

a
sin

³mπz

b

´

This is a Fourier series for σ and we find the coe¢cients in the usual way. This
time we have to use the orthogonality of the sines twice: once in y and once in
z. First multiply both sides of the equation by sin (pπy/a) and integrate over y
from 0 to a.
Z a

0

σ

ε0
sin

pπy

a
dy =

Z a

0

1X

n=1

1X

m=1

¡
r³nπ

a

´2

+
³ mπ

b

´2

Anm sin
nπy

a
sin

³ mπz

b

´
sin

pπy

a
dy

Interchange the sum and the integral on the right, and move everything that
does not depend on y out of the integral:

σ

ε0

Z a

0

sin
pπy

a
dy =

1X

n=1

1X

m=1

¡
r³nπ

a

´2

+
³ mπ

b

´2

Anm sin
³ mπz

b

´ Z a

0

sin
nπy

a
sin

pπy

a
dy

The integral on the right is zero except for the one term with n = p. So we have

σ

ε0

a

pπ
¡ cos

pπy

a

¯̄
¯
a

0
=

1X

m=1

¡
r³pπ

a

´2

+
³mπ

b

´2

Apm sin
³ mπz

b

´ a

2

σ

ε0

2

pπ
(1 ¡ cospπ) =

1X

m=1

¡
r³pπ

a

´2

+
³mπ

b

´2

Apm sin
³ mπz

b

´
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Now we do it again, this time multiplying by sin qπz/b

σ

ε0

2

pπ
(1 ¡ cospπ)

Z b

0

sin
qπz

b
dz =

1X

m=1

¡
r³ pπ

a

´2

+
³ mπ

b

´2

Apm

Z b

0

sin
qπz

b
sin

³ mπz

b

´
dz

σ

ε0

2

pπ
(1 ¡ cos pπ)

b

qπ
(1 ¡ cos qπ) = ¡

r³ pπ

a

´2

+
³ qπ

b

´2

Apq
b

2

Aha! We have isolated the constant Apq .

Apq = ¡ σ

ε0

4

pqπ2

(1 ¡ cospπ) (1 ¡ cos qπ)q¡ pπ
a

¢2
+

¡ qπ
b

¢2

But cospπ = +1 if p is even, so 1 ¡ cospπ = 0, and cos pπ = ¡1 if p is odd, and
in that case 1 ¡ cospπ = 2. Thus Apq is zero unless both p and q are odd, and
then

Apq = ¡ σ

ε0

16

pqπ2

1q¡
pπ
a

¢2
+

¡
qπ
b

¢2

and then the potential is

V (x, y, z) = ¡ 16σ

π2ε0

1X

n=1
odd

1X

m=1
o dd

1

nm

q¡
nπ
a

¢2
+

¡
mπ
b

¢2
exp

"
¡

r³nπ

a

´2

+
³ mπ

b

´2

x

#
sin

nπy

a
sin

³mπz

b

´

The result has the correct physical dimensions of charge/(ε0£length) (remember
that σ =charge/length2) and the series converges very rapidly, both because of

the denominator nm

q¡
nπ
a

¢2
+

¡
mπ

b

¢2
, and, for x > 0, the exponential function.

As we saw in the 2-d case, convergence is worst right at the boundary where V
is non-zero.

Let’s review the method step by step.
Separation of variables method for solving Laplace’s equation.

² 1. Separate the PDE into 2 (or 3) coupled ODEs. Note that the sepa-
ration constants must sum to zero. Start with a coordinate that has
zero potential or zero E? on the constant coordinate surfaces (for
example V = 0 at x = 0 and x = a).

2. Determine the possible set of solutions of the ODE in your chosen
coordinate. Since it is a second order equation, it will have two
possible solutions.

3. Find the correct function (of the two possible functions you found in
step 2) using one of the two boundary conditions.

4. Find the separation constant using the second boundary condition.

5. Repeat steps 2-4 for the second coordinate, if V depends on 3 coor-
dinates.
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6. At this point you know the complete equation for the third function.
Solve it, using the last zero boundary condition to determine the
correct function (of the two possible functions you found in step 2).

7. Form a linear combination of the solutions you have identified using
steps 1-6.

8. Use orthogonality together with your final boundary condition to
determine the constants in your solution.
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