
Electric displacement
Now let’s see how to investigate the fields that are produced by a collection

of charges, both bound and free. (Free charges are those not bound up in
atoms and molecules of the material. This includes charges on the surface of
conductors.)

We have Gauss’ law
~r ¢ ~E =

ρ

ε0
=

ρf + ρb

ε0

But we also discovered that
ρb = ¡~r ¢ ~P

so

~r ¢ ~E =
ρf ¡ ~r ¢ ~P

ε0

Now it is convenient to gather the two divegences together:

ε0
~r ¢ ~E + ~r ¢ ~P = ρf = ~r ¢ ~D (1)

where the electric displacement ~D is defined to be

~D = ε0
~E + ~P (2)

For LIH materials

~D = ε0
~E + εχe

~E = ε0 (1 + χe) ~E = ε ~E (3)

ε is the permittivity of the material and the dimensionless ratio ε/ε0 = κ is the
dielectric constant. Note that the ~E here is the net ~E at position ~r due to all
sources, including ~P itself. So it is often easier to work with ~D, which satisfies
Poisson’s equation in the form (1).

Boundary conditions for ~D.
We find the boundary conditions for ~D, as we did for ~E, by putting a tuna-

can across the boundary, and integrating equation (1) across the boundary.
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Z
~r ¢ ~D dV 6=

Z
ρf dV

I
~D ¢ d ~A =

Z
ρf dhdA = σf dA

The contribution from the sides of the box is negligible, because h ¿ d. So
³

~D1 ¡ ~D2

´
¢ n̂ = σf (4)

Previuosly we used the di¤erential equation ~r£ ~E = 0 to derive the boundary
condition that ~Eta n is continuous across a boundary. If ~D = ε ~E in an LIH
material, then ~r £ ~D is also zero. But ~r £ ~D is not zero at the boundary
because ε changes abruptly there. In fact, ~r £ ~D is infinite at the boundary.
So we have one boundary condition (4) for ~D and one for ~E.

To see how this works, let’s look at our slab again. With the slab’s sides
parallel to the y ¡ z¡plane, and normals in the §x direction, the normal com-
ponent of ~D is Dx. Thus Dx is continuous as we cross the boundary since there
is no free charge there. (The charge layer is entirely bound charge.)

Dx,out = ε0Ex,app = εExin = Dx, in

The tangential component of ~E is zero both inside and outside. So

~Ein =
ε0

ε
~Eapp

The boundary condition on ~E gives us the bound charge density. On the
right hand side

Ex,out ¡ Ex,in =
σ

ε0
= Ex,a pp

³
1 ¡ ε0

ε

´

Thus
σb = (ε ¡ ε0)Ex,a pp

Using the same method, convince yourself that the charge on the left side is the
exact negative of this.
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Boundary value problems
If we have a boundary between two uniform regions (two uniform dielectrics,

or a dielectric and a conductor, or a dielectric and vacuum) then we have the
following set of equations:

~r ¢ ~D = ρf (5)

and
~r £ ~E = 0

within each region. Since ~r £ ~E = 0, we may write ~E = ¡~rV, and equation
(5) may be written

¡~r ¢
³
ε~rV

´
= ρf = ¡εr2V ¡ ~rε ¢ ~rV

Since we are assuming our medium is uniform, ~rε = 0, and the equation for
the potential is

r2V = ¡
ρf

ε
(6)

Be careful! ~rε 6= 0 right at the boundary. We may use equation (6) within each
region, but not across the boundary.

The boundary conditions are:
³

~D1 ¡ ~D2

´
¢ n̂ = σf

~Etan is continuous

V is continuous

Dielectric sphere in a uniform field
To see how to use these relations, consider a dielectric sphere of radius

a placed in a uniform field ~E0. Because the boundary is spherical, we use
spherical coordinates with origin at the center of the sphere and polar axis
parallel to ~E0. There is no free charge, so V satisfies Laplace’s equation both
inside and outside the sphere (but not ON the boundary), and we know the
potential may be written in terms of Legendre polynomials.

Inside the sphere, the potential must not blow up at r = 0, so we have only
positive powers of r :

V (r < a) =

1X

l=0

Alr
lPl (cos θ)

Outside, we must have a potential that gives us the uniform field ~E0. That
potential is Vunif = ¡E0z = ¡E0r cos θ = ¡E0rP1 (cos θ) . Other than that, all
the other terms must ! 0 as r ! 1, so

V (r > a) = ¡E0rP1 (cos θ) +
1X

l=0

B l

rl+1
Pl (cos θ)
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Now we apply all our conditions, starting with the easiest one. V is continuous.

1X

l=0

Ala
lPl (cos θ) = ¡E0aP1 (cos θ) +

1X

l=0

Bl

al+1
Pl (cos θ)

Because the Pl are orthogonal, the coe¢cient of each Pl must separately equal
zero. Thus

l = 1 : A1a = ¡E0a +
B1

a2
(7)

l 6= 1 : Ala
l =

Bl

al+1
(8)

Now we use the boundary condition for ~D. The normal component is the radial
component, and there is no free charge on the surface, so we have

ε
∂V (r < a)

∂r

¯̄
¯̄
r=a

=
∂V (r > a)

∂r

¯̄
¯̄
r=a

ε

1X

l=0

lAla
l¡1Pl (cos θ) = ¡E0P1 (cos θ) +

1X

l=0

¡ (l + 1)
Bl

al+2
Pl (cos θ)

Again the coe¢cient of each Pl must separately equal zero.

l = 1 : εA1 = ¡E0 ¡ 2
Bl

a3
(9)

l 6= 1 : εlAla
l¡1 = ¡ (l + 1)

Bl

al+2
(10)

For l 6= 1, we use equation (8) to eliminate Al from equation (10), and get

l 6= 1 : εl
B l

al+2
= ¡ (l + 1)

Bl

al+2

which could only be true if ε = ¡ (l + 1)/l. This is impossible because ε is not
negative for ordinary materials, and cannot equal ¡ (l + 1)/l for more than one
l , if any, in any case. Thus we must conclude that Bl = Al = 0.

It is a di¤erent story for l = 1. We use equation (7) to eliminate A1 from
equation (9).

ε

µ
¡E0 +

B1

a3

¶
= ¡E0 ¡ 2

Bl

a3

B1

a3
(ε + 2) = E0 (ε ¡ 1)

So

B1 = E0a
3 ε ¡ 1

ε + 2

and then

A1 = ¡E0 + E0
ε ¡ 1

ε + 2
= ¡3

E0

ε + 2
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The potentials are

V (r < a) = ¡ 3

ε + 2
E0r cos θ

V (r > a) = ¡E0r cos θ + E0
ε ¡ 1

ε + 2

a3

r2
cos θ

The field inside is uniform:

~E (r < a) =
3

ε + 2
~E0

and outside we have the applied, uniform field, plus a dipole field with dipole
moment

~p = 4πε0
~E0a

3 ε ¡ 1

ε + 2

The dipole moment is zero if ε = 1 (the sphere is vacuum, ie there is no sphere!).
The field inside the sphere is less than the applied field for ε > 1, as expected.

Since ε measures the degree to which the material can reduce an applied field
in its interior, we might imagine that a conductor, which reduces an applied
field to zero, coresponds to a very large value of ε. In fact some properties of
conductors may be retrieved in the limit ε ! 1. This limit applied to our
sphere gives us zero field inside and a dipole moment ~p = 4πε0

~E0a
3. These are

the results we found previously for a conducting sphere.
Energy
We have learned several things about electric energy that are relevant to our

present discussion.

² The energy density stored in the electric field in vacuum is u = 1
2
ε0E

2

² The energy stored in a capacitor is U = 1
2
C (¢V )

2

² A dipole in an electric field has potential energy U = ¡~p ¢ ~E

Let’s look at the second of these first. If we fill a capacitor with dieletric we
increase the capacitance by ε. To see why, compute the capacitance by putting
a charge Q on the capacitor. The field inside the dielectric is a factor κ = ε/ε0

smaller than with no dielectric, so the potential di¤erence is also a factor of κ
smaller, and thus the capacitance C = Q/¢V is a factor κ larger. Thus the
stored energy also increases by a factor of κ (if the potential di¤erence is held
fixed).

But we know that the energy stored in a capacitor is stored in the electric
field, and, without dielectric

U =
1

2
C0 (¢V )

2
=

Z
1

2
ε0E

2dV
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where the integral is over the volume of the capacitor. With dielectric:

U =
1

2
C (¢V )

2
=

1

2
κC0 (¢V )

2
=

Z
1

2
κε0E

2dV

=

Z
1

2
εE2dV =

Z
1

2
~E ¢ ~D dV

So it looks as if the energy density is

u =
1

2
~E ¢ ~D

which is greater than 1
2 ε0E

2.(for the same E.) Why is that? Well, as we increase
the field by bringing up free charge, that field acts to create and/or align the
atomic dipoles in the material. The work done by the field is negative (3rd point
above) and thus the stored energy in the field is increased by the work done.

We can confirm these conjectures by imagining a process to put the system
together. So we bring up the free charges, bit by bit. We don’t have control
over the bound charges— they just do what they must do. So when the potential
has the value V and we bring up the next piece of free charge, we have to do
work

¢W =

Z ¡
¢ρf

¢
V dτ

=

Z ³
~r ¢ ¢ ~D

´
V dτ

Now we do the usual "integration by parts" trick.

~r ¢
³
¢ ~DV

´
=

³
~r ¢ ¢ ~D

´
V + ¢ ~D ¢ ~rV

So

¢W =

Z h
~r ¢

³
¢ ~DV

´
¡ ¢ ~D ¢ ~rV

i
dτ

=

Z

S1
¢ ~DV ¢ n̂ dA +

Z ³
¢ ~D

´
¢ ~E dτ

The first term is zero, for the usual reasons. Now if our material is LIH, then
¢ ~D = ε¢ ~E and

³
¢ ~D

´
¢ ~E = ε

³
¢ ~E

´
¢ ~E =

1

2
ε¢

³
~E ¢ ~E

´

=
1

2
¢

³
~E ¢ ~D

´

Thus

¢W = ¢

Z
1

2
~E ¢ ~D dτ
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and hence

u =
1

2
~E ¢ ~D

as we conjectured above.
Note: I found Gri¢th’s discussion somewhat misleading. All the energy is

electric, including his so-called "spring" energy. For a more complete discussion,
see Jackson §4.7.

Forces:
We have already noted from energy arguments that dielectrics are sucked

into higher field regions. Here we’ll investigate the force that does the sucking.
We’ll use as our example system a parallel plate capacitor. The plates measure
w £ ` and the plate separation is d. Let’s charge up the capacitor, and then
disconnect it from the battery. This gives us a nice, clean isolated system with
the charge on each plate fixed at Q = Q0.. Now we insert a dielectric slab that
fills the space between the capacitor plates. The initial energy is

Ui =
1

2

Q2
0

Ci
=

1

2
Ci (¢V0)

2

The final energy is

Uf =
1

2

Q2
0

Cf
=

1

2

Q2
0

κCi
=

Ui

κ

The energy decreases because the capacitor does work on the slab as it sucks it
in.

To find the force, we look at the system when the slab is part way in, as
shown:

We may model this system as two capacitors in parallel: one with plate area
A1 = w(` ¡ x) and one with plate area A2 = wx. The two capacitances are

C1 =
ε0A1

d
and C2 =

εA2

d

The total capacitance for the two in parallel is

C (x) = C1 + C2 = ε0
w

d
[` ¡ x + κx] = ε0

w

d
[̀ + (κ ¡ 1)x]

and the stored energy is

U (x) =
1

2

Q2
0

C (x)
=

1

2

Q2
0d

ε0w [` + (κ ¡ 1)x]
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The potential di¤erence between the plates is ¢V (x) = Q/C (x) and may be
measured along any path between any two points on the plates. Thus the
electric field between the plates (~E = ¡~rV ) is the same in the part with the
dielectric and the part without. But ~D = ε ~E is greater in the part with the
dielectric, and thus the free charge density on the conducting plates is greater
where the dielectric is. As the slab moves in, charge migrates across the plates.

Now in the ideal models we have been using, the field lines, both in the vac-
uum and in the dielectric, are everywhere perpendicular to the plates, and the
charge density, both bound and free, forms layers parallel to the plates. But
that’s not quite right. At the very end of the slab there is some bound charge
density and some field lines connect from the plates to the end of the slab. The
volume occupied by these curved field lines is very small, and consequently our
calculation of the capacitance is extremely accurate, as is the energy. This is
just as well, because it is very hard to calulate this "fringing field" accurately.
But it is precisely this field that gives rise to the sucking force! Fortunately we
can calculate the force using energy arguments, without having to find the field.

Work done by the fields reduces the stored energy

dW = ~F ¢ d~s = U (x) ¡ U (x + dx)

Fxdx = ¡dU

dx
dx

and so

Fx = ¡dU

dx
(constant Q) (11)

= ¡ d

dx

1

2

Q2
0

C (x)
(12)

= ¡ d

dx

1

2

Q2
0d

ε0w [` + (κ ¡ 1)x]

=

µ
¡1

2

Q2
0d

ε0w

¶ Ã
¡ (κ ¡ 1)

[` + (κ ¡ 1)x]
2

!

=
1

2

Q2
0d

ε0wl2
(κ ¡ 1)

[1 + (κ ¡ 1) x/`]2

Fx (x) =
1

2

Q2
0

C0l

(κ ¡ 1)

[1 + (κ ¡ 1)x/`]
2 (13)

Dimensionally this is correct, since Q/C0 = ¢V0 and Q¢V0/l is dimensionally

8



charge£electric field = force. Fx is positive, so the force does pull the slab in,
as we already concluded. The force decreases as x increases, and is maximum
just as the slab enters the capacitor.

We can aslo write the force (13) as

Fx =
1

2

C0

`

Q2
0

C 2
0

(κ ¡ 1)

[1 + (κ ¡ 1) x/`]2
=

1

2
(κ ¡ 1)

C0

`

Q2
0

C (x)2
=

1

2
(κ ¡ 1)

C0

`
[¢V (x)]2

(14)

Letting F0 = 1
2

Q2
0

C0l , we plot F/F0 versus x/`.
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Now what happens if we leave the capacitor hooked up to the battery? The
capacitor is no longer isolated, so the discussion is a bit more complicated. This
time the potential di¤erence stays fixed at ¢V = ¢V0, and the battery pumps
extra charge onto the plates as the slab goes in. The final energy is then

Uf =
1

2
Cf (¢V0)

2 = κUi

The energy increases! So the battery adds energy as well as charge. Yet the
slab still gets sucked in. How can this be? Energy balance looks like this:

Work done by battery - work done by fields = change in stored energy.

The work done by the battery to add charge dQ is

dWbat tery = dQ (¢V0)

= dC (¢V0)
2

=
dC

dx
dx (¢V0)

2

The work done by the fields on the slab is thus

dWfie lds = dWbatt ery ¡ dU =
dC

dx
(¢V0)

2
dx ¡ dU

dx
dx
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But the energy now is

U (x) =
1

2
C (x) (¢V0)

2 =
1

2
ε0

w

d
[` + (κ ¡ 1)x] (¢V0)

2

and
dU

dx
=

1

2

dC

dx
(¢V0)

2

So

dWfie lds = Fxdx =
dC

dx
(¢V0)

2

·
1 ¡ 1

2

¸
dx =

1

2

dC

dx
(¢V0)

2
dx

Fx =
1

2

dC

dx
(¢V0)

2 =
dU

dx
(constant ¢V ) (15)

Fx =
1

2
(κ ¡ 1)

C0

l
(¢V0)

2 (16)

If we compare (11) and (15) it appears that the force has changed sign. But
because the energy U depends on C, Q and ¢V, it is not that simple. When
we actually calculate the force in the two cases we find that it is in the same
direction, although with the battery connected, the force remains constant as
the slab is inserted. Comparing (14) and (16), we see that the force in the
second case equals the initial force in the first case.
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