
Physics 360
Electric fields in dielectrics
Atoms or molecules in a neutral insulator contain charges, of course, because

every atomic nucleus has positive charge and is surrounded by a cloud of negative
electrons. In some substances the fundamental molecules that make up the
substance have charges that are distributed pretty symmetrically so that the
dipole moment, as well as the monopole moment, of each molecule is zero.
In others, like water, there is a non-zero dipole moment associated with each
molecule. If either kind of substance is placed in a field-free region of space, it
generates no electric field of its own: in the first case, because there are no non-
zero multipoles; and in the second because the dipoles are aligned randomly, so
that the net field due to all the dipoles is zero.
Now let’s see what happens if we apply an electric field to the material.

In the first case, the electric field pushes the positively charged nuclei in one
direction and the negatively charged electron cloud in the other, causing each
molecule to have a small dipole moment. The size of the dipole moment is
directly proportional to the strength of the electric field.

�p = α�E

where α is the atomic polarizability. We can see how this happens by creating
a crude model of an atom as a point nucleus with charge Ze and a spherical
electron cloud with radius a and charge density ρ = −Ze/ ¡4πa3/3¢ . (This is
pretty good for a single atom in its ground state.) We’ll also assume that
the electron cloud stays spherical and moves bodily to one side, so that the
nucleus and the center of the cloud are offset by a distance d. Once equilibrium
is reached there is no net charge on the nucleus. That means that the external
field �E and the field inside the cloud at distance d from its center sum to zero.
We can easily find from Gauss’ law (LB Exercise 24.4).that the internal field is

�Eint =
−Ze�r
4πε0a3

Thus
Zed

4πε0a3
= E

The dipole moment of the configuration is

p = Zed = 4πε0a
3E

Thus
α = 4πε0a

3

Tabulated values usually give α/4πε0 which is a3 in this simple model. Taking
a = the Bohr radius, =6× 10−11 m, we have

α

4πε0
= 2. × 10−31 m3
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Values α
4πε0

in units of 10−30 m3 simple model H He Ca Na
0.2 0.67 0.2 1.76 24.1

The simple model works pretty well for the inert gases He and Ne, and is
not bad for Hydrogen.
Note here that if �E is very strong, d may be bigger than a! This means

that the nucleus is no longer in the electron cloud. The atom has been ionized!
Once this happens all hell breaks loose — the free electrons make the insulator
into a conductor. The electric field strength at which this happens is called the
dielectric strength of the material.
Using our simple model again,

d =
4πε0a

3

Ze
E = a

for

E =
Ze

4πε0a2

and for hydrogen this would be

E =
1.6× 10−19 C

4π (8.85× 10−12 F/m) (6× 10−11m)2 = 4× 10
11 V/m

This is a very big field! In fact it is too big. Typical dielectric strengths are
measured to be around a few MV/m.
More complicated molecules may be more easily polarized in one direction

than another, so it is possible that the value of α could depend on the relative
orientation of the electric field and the molecule. Let’s not get into that here.
If a molecule has a dipole moment, each molecule experiences a net torque

�τ = �p× �E (LB 24.12) that tends to align it along the direction of �E .
In both types of material, then, we expect to find dipoles aligned with �E

when we apply an electric field to the material. We say that the resulting
material is polarized. The polarization �P of the material is the dipole moment
per unit volume. If we have n molecules per unit volume, each with dipole
moment �p, then

�P = n�p

Let’s look at some consequences of this.
Forces
If a dipole is in a non-uniform electric field, there is a force on it. Using an

ideal dipole as our model,

�F = lim
d→0

h
−q �E (�r) + q �E

³
�r + �d

´i
We can do a Taylor series expansion on the function �E (x, y, z) . For example,
if we put the x−axis along �d :

�E (x0 + d, y, z) = �E (x0, y, z) + d
∂

∂x
�E (x, y, z)

¯̄̄̄
x=x0

+ · · ·

�E
³
�r + �d

´
= �E (�r) +

³
�d · �∇

´
�E + · · ·
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The second form of the result is coordinate-free, and so it is true for any orien-
tation of �d. Thus

�F = lim
d→0
−q
h
�E (�r)−

³
�E (�r) +

³
�d · �∇

´
�E + · · ·

´i
= lim

d→0
−q
h
−�d · �∇�E

i
=
³
�p · �∇

´
�E

Thus a polarized material in a non-uniform field experiences a force per unit
volume

�f =
³
�P · �∇

´
�E

This force tends to draw the dielectric into higher field regions. More later....
Energy
A dipole in a uniform field �E posesses potential energy. We can calculate it

in the usual way by imagining a way to put the system together. So let’s bring
in the two charges one at a time. To bring the charge −q in we exert a force
q �E that is exactly equal and opposite to the force −q �E exerted by the field �E.
The work we do is

W1 =

Z 0

∞
q �E · d�s

Now we bring in the second charge +q to its final position �d. We have to exert
a force that is the exact opposite of the forces exerted by the charge −q and the
field �E

�F = −q �E + kq2

r2
r̂

and we do work

W2 =

Z �d

∞

µ
−q �E + kq2

r2
r̂

¶
· d�s

The total work done is

W = W1 +W2 =

Z 0

∞
q �E · d�s+

Z �d

∞

µ
−q �E + kq2

r2
r̂

¶
· d�s

=

Z �d

∞
q �E · d�s+

Z 0

�d

q �E · d�s+
Z �d

∞

µ
−q �E + kq2

r2
r̂

¶
· d�s

=

Z 0

�d

q �E · d�s+
Z �d

∞

kq2

r2
r̂ · d�s

The first term is what we want. The second term is the self-energy of the
dipole, and, as we did for point charges, we are going to neglect it. Finally as
�d→ 0, we have

W = −q �E · �d = −�p · �E
Thus the potential energy is

U = −�p · �E
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and our polarized material has an energy density

u = −�P · �E (1)

due to the polarization. Here we can see that the energy becomes more negative
the greater �P · �E becomes. Left to their own devices, systems tend toward the
minimum possible energy state, so again we see that our system will be drawn
into greater field regions, and aligned with �P parallel to �E.
The field produced by a polarized material
A polarized material, whether the polarization is produced by an external

field or something else, will generate its own field as a result of the dipoles within
it. We already know the potential produced by each dipole:

Vone dipole at �r0 (�r) =
�p · (�r − �r0)
4πε0 |�r − �r0|3

So now we sum up the potentials due to all the dipoles in the material. This is
relatively easy because the potential is a scalar The potential produced by the
dipoles in a volume dτ 0 is

dV (�r) = n
�p · (�r − �r0)
4πε0 |�r − �r0|3 dτ

0 =
�P · (�r − �r0)
4πε0 |�r − �r0|3 dτ

0

and so the potential produced by the whole material is

V (�r) =

Z �P · (�r − �r0)
4πε0 |�r − �r0|3 dτ

0 (2)

and the integral is over the whole region of space where �P is not zero.
Now here’s a neat trick

�∇0 1

|�r − �r0| =

µ
x̂

∂

∂x0
+ ŷ

∂

∂y0
+ ẑ

∂

∂z0

¶
1q

(x− x0)2 + (y − y0)2 + (z − z0)2

= −1
2

−2 (x− x0) x̂− 2 (y − y0) ŷ − 2 (z − z0) ẑh
(x− x0)2 + (y − y0)2 + (z − z0)2

i3/2
=

(�r − �r0)
|�r − �r0|3

So we can write V as

V (�r) =
1

4πε0

Z
�P · �∇0 1

|�r − �r0|dτ
0

Now we integrate by parts, by making use of the relation

�∇ · (φ�u) = φ�∇ · �u+ �u · �∇φ
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with �u = �P and φ = 1/ |�r − �r0| . Thus

V (�r) =
1

4πε0

Z "
�∇0 ·

µ
�P

1

|�r − �r0|
¶
−

�∇0 · �P
|�r − �r0|

#
dτ 0

Using the divergence theorem on the first part, we have:

V (�r) =
1

4πε0

Z
S

�P

|�r − �r0| · d
�A0 − 1

4πε0

Z �∇0 · �P
|�r − �r0|dτ

0

The surface S is the boundary of the region where �P is not zero- usually the
surface of our material. The first term looks like the field due to a surface charge
density

σb = �P · n̂. (3)

This is not surprising, because the ends of the dipole at the surface form a
surface charge layer. We call this "bound" charge, because the charges are still
attached to the atoms they came from. The second term looks like the potential
due to a bound charge density

ρb = −�∇ · �P
In many cases this bound volume charge density is zero, because �P is uniform
within the material.
This whole discussion is based on the idea that we can average over a re-

gion that is microscopically large (contains very large numbers of molecules)
but macroscopically differential (much less than all relevant dimensions of our
material). The details are subtle. (see Griffiths section 4.2.3) If you want the
truth, the whole truth etc etc look at Jackson section 4.5. The difficulty is in
correctly relating the overall polarization �P to the individual molecular polar-
izability α. As long as we are willing to believe that an external field creates a
polarization �P , and we can measure how �P relates to �E as an experimental fact,
we don’t actually need the theoretical details of how �P is related to α. Thus we
have

�P = ε0χe �E

where χe is the electric susceptibility of the material and �E is the macroscopic
electric field. Materials that obey this relation are described as linear. If the
proportionality constant χe is the same everywhere in the material, it is also
described as homogeneous, and if χe is independent of the direction of �E, then
the material is also isotropic. Thus the simplest materials are the LIH (linear,
isotropic, homogeneous) materials.
A polarized sphere
Suppose a sphere of radius a has a uniform polarization �P throughout its

interior. We choose a coordinate system with origin at the center of the sphere
and with polar axis parallel to �P . Then

σb = �P · n̂ = P cos θ
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Then on the polar axis, with z > a,

V (z) =
1

4πε0

Z
S

�P

|�r − �r0| · d
�A0 = V (�r) =

1

4πε0

Z
S

P cos θ0

|�r − �r0| dA
0

=
1

4πε0r

∞X
l=0

1

rl

Z
S

alPl (cos θ)P cos θ
0a2 sin θ0dθ0dφ0

where we used the expansion of 1/|�r − �r0| in Legendre polynomials. The integral
is zero unless l = 1, in which case

V (z) =
2π

4πε0r

a3P

r

2

3
=

P

3ε0

a3

r2

and thus at an arbitrary point outside the sphere

V (�r) =
P

3ε0

a3

r2
P1 (cos θ) =

P

3ε0

a3

r2
cos θ

This is a dipole potential with dipole moment �p = 4π �Pa3/3 = �P× the volume
of the sphere.
To get the potential inside, we use the boundary condition

Er,out −Er,in =
σ

ε0

So

Er,in = 2
P

3ε0

a3

r3
cos θ

¯̄̄̄
r=a

− P cos θ

ε0
= −1

3

P cos θ

ε0

Thus the potential inside is

V (�r) = V0 +
1

3

P

ε0
r cos θ

and since the potential is continuous at r = a,

V0 = 0

Thus

V (�r) =
1

3

P

ε0
r cos θ =

1

3

P

ε0
z

giving a uniform field inside

�E = −�∇V = −1
3

P

ε0
ẑ = −1

3

�P

ε0

See also Griffiths example 4.3.
A dielectric slab
Now let’s see what happens when we apply a uniform external field to a di-

electric slab. The slab becomes polarized, producing equal and opposite surface
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charge layers on the two edges of the slab. These layers produce an internal
field

Eint =
σb
ε0

opposite the original field, so the net field has magnitude

Enet = Eapp −Eint < Eapp

The electric field has been reduced, but, unlike a conductor, the field is not
reduced to zero because of the limited mobility of the charges.
Now here’s the interesting thing. The polarization is proportional to �Enet ,

which is due, in turn, to �P . Thus as the polarization forms, it continuously
adjusts, along with �E, until equlibrium is achieved. As we saw with conductors,
it takes a very short time for this equilibium to be established.
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