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In Vlasov theory we use the full power of the Vlasov equation to discuss the evolution of
a plasma, including the effects of details of the particle velocity distribution on the evolution
of perturbations. We will study growth and damping of perturbations. The basic technique
is the standard "perturb and linearize" approach that we have been using. Our first topic is
the Landau damping of Langmuir waves.

1 Landau damping

1.1 Qualitative discussion

First a qualitative analysis. The effect arises from an interaction of the individual particles
with the wave potential, which translates at the wave phase speed vφ = ω/k. Some particles
travel faster than the wave and move to the right in the diagram below. The total energy of
an electron is

E =
1

2
mv2 ¡ eφ =

1

2
mv2 + UE

One such particle that starts with UE = U1 < eφmax will ultimately be reflected by the wave
potential: it will bounce back and forth in the potential well. But a particle with an initial
UE > eφmax will go over the hill (with some loss of speed). Similarly, a particle going
slightly slower than the wave will move to the left in the wave frame and will be trapped. A
particle going a lot slower is not trapped but continues to move to the left in the wave frame.

A particle that is initially moving with v > vφ and becomes trapped ends up with an average
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speed equal to vφ. Since its energy is decreased, the wave gains energy. But a particle
moving with v < vφ that gets trapped gains energy (in the lab frame) and so the wave loses
energy. If vφ is in the tail of the Maxwellian distribution, there are more particles that gain
energy than particles that lose energy. and so the wave loses energy– it is damped. This is
nonlinear Landau damping.

To understand linear Landau damping we have to look at the initiation of this process.
Let’s see what happens to the particle velocities: (diagram from Chen p 255). The bottom
graph shows the particle potential energy ¡eφ. The upper panel shows the particle velocities
in the wave frame. A particle initially at A gains energy during the first quarter cycle of the
wave, while a particle intially at C loses energy. Similarly a particle initially at B loses
energy during the first quarter cycle, while a particle at D gains energy. Since there are more
particles at A than at C and more at D than at B, (see distribution to the left) the particles
as a whole lose energy and so the wave damps. Thus linear Landau damping is a startup
effect. This is a clue– initial conditions are going to be important in our analysis.
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1.2 Mathematical analysis.

Langmuir waves are highfrequency waves so the ions are unperturbed. The Vlasov equation
(plasfluid notes eqn 9) with electrostatic fields only is:

∂f

∂t
+ ~v ¢ ~rf +

q

m
~E ¢ ∂f

∂~v
= 0

Now we perturb and linearize. A new feature we have not used before is the perturbation to
the distribution function:

f (~v) = f0 (~v) + f1 (~v)

Then, with ~E0 = 0, and keeping only first order terms,
∂f1

∂t
+ ~v ¢ ~rf1 +

q

m
~E ¢ ∂f0

∂~v
= 0 (1)

Poisson’s equation will allow us to relate the integral of f to ~E. Remember (plasfluid notes
eqn 6):

n =

Z
f (~v)d3~v

Thus:

r ¢ ~E = ¡ e

ε0
n1 = ¡ e

ε0

Z
f1(~v) d3~v (2)

Next Fourier transform these two equations (or, equivalently, assume that the perturbation is

proportional to exp i
³
~k ¢ ~x ¡ ωt

´
):

¡iωf1 + i~k ¢ ~vf1 ¡ e

m
~E ¢ ∂f0

∂~v
= 0 (3)

and

i~k ¢ ~E = ¡ e

ε0

Z
f1(~v)d

3~v (4)

Choosing coordinates with the x¡axis along ~E, we have:

Ex = i
e

ε0kx

Z
f1(~v)d3~v

and we find f1 from (3).

f1 = i
e

m
Ex

∂f0

∂vx

1

ω ¡ ~k ¢ ~v
(5)

Substitute into the previous equation:

Ex = i
e

ε0kx

Z
i

e

m
Ex

∂f0

∂vx

1³
ω ¡ ~k ¢ ~v

´d3~v = ¡ n0e
2

ε0mk
Ex

Z
∂f̂0

∂vx

1

(ω ¡ kvx)
d3~v

where in the last line we assumed longitudinal waves with ~E parallel to ~k. Then for Ex not
zero, we have the dispersion relation:

1 =
ω2

p

k2

Z
∂f̂0

∂vx

1

(vx ¡ ω/k)
dvydvz dvx (6)

Now in principle the problem is solved. But how do we do that integral? There is no
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problem with the integral over vy and vz . But since ω is, in general, a complex number, we
are actually doing an integral along the real axis in the complex vx plane, and such integrals
are path dependent unless the integrand is analytic everywhere. Our integrand has a pole at
vx = ω/k. As the imaginary part of ω gets smaller, the pole approaches the real axis, and we
shall have to deform our path to go around the pole. So how do we know what path to use?

Well, remember that Landau damping is a result of initial conditions. So we should
really be solving an initial value problem, for which the Laplace transform usually works
better than the Fourier transform. So let’s go back to 1 and Laplace transform it in time
while retaining the Fourier transform in space:

sF1 ¡ f1 (0) + i~k ¢ ~vF1 ¡ e

m
L (Ex)

∂f0

∂vx
= 0

where F1 is the Laplace transform of f1 and f1 (0) is the intitial value of f1. Now we solve
for F1 :

F1 =
f1 (0) + e

m
L (Ex) ∂ f0

∂vx

s + ikvx
From Poisson’s equation (2), we get:

ikL (Ex) = ¡ e

ε0

Z
F1(~v)d3~v = ¡ e

ε0

Z
f1 (0) + e

m L (Ex) ∂ f0

∂vx

s + ikvx
d3~v

Factor out the density and write f0 = n0f̂0 to get:

L (Ex)

Ã
ik +

n0e
2

ε0m

Z
∂f̂0

∂vx

1

s + ikvx
d3~v

!
= ¡ e

ε0

Z
f1 (0)

s + ikvx
d3~v

or

L (Ex) =
i e

ε0k

R f1(0)
s+ ikvx

d3~v

1 + n0e2

iε0mk

R ∂f̂0

∂vx

1
s+ ikvx

d3~v
=

i e
ε0k

R f1(0)
s+ikvx

d3~v

1 + .
ω2

p

k2

R
∂ f̂0

∂vx

1
is/k¡vx

d3~v

=
i e

ε0k

R
f1(0)

s+ikvx
d3~v

1 ¡ .
ω2

p

k2

R
∂ f̂0

∂vx

1
vx¡is/k d3~v

´
i e

ε0k

R f1(0)
s+ikvx

d3~v

ε (is, k)
(7)

where I have used the definition

ε (is, k) ´ 1 ¡ .
ω2

p

k2

Z
∂f̂0

∂vx

1

vx ¡ is/k
d3~v

and ε is the dielectric constant (see below). Here we see that our previous dispersion relation
6 is just ε (ω, k) = 0, where ε appears in the denominator of L (Ex) , with is replaced with
ω.

To solve for Ex , we use the Mellin inversion integral.

Ex (t) =
1

2πi

Z γ+i1

γ ¡i1
L (Ex) estds
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The prescription says that we must choose a path of integration that passes to the right of all
the poles of L (Ex) . Note that these poles are just the zeroes of the denominator, i.e. the
roots of the dispersion relation.

Thus on the integration path we have Re(s) = γ. Noting that this s is related to the
previous ω by is = ω, we have Re(s) = Re (¡iω) = Im (ω) . Thus on the integration path
in the ω¡plane, Im (ω) = γ.

Now we can take this information and use it in our previous problem. The poles of
L (Ex) determine the behavior of the integral that gives Ex , that is they determine the
behavior of the plasma. In fact, if we denote the roots of ε = 0 as ωn , (and assume these are
simple poles) then we can evaluate the integral to get:

Ex (t) =
1

2πi

Z γ+i1

γ¡i1
L (Ex) estds =

1

2πi

Z γ+i1

γ¡i1

i e
ε0k

R f1(0)
s+ikvx

d3~v

ε (is, k)
estds

=
X

n

lim
s!¡iωn

s + iωn

ε (ω, k)

ie

ε0k

Z
f1 (0)

s + ikvx
d3~v e¡iωmt

where s is greater than Re (¡iωn ) until the limit is taken.
Now let’s look at the ω¡plane. Remember that ω = is means the ω¡plane is rotated

90o relative to the s¡plane: s = +1 corresponds to ω = +i1, s = +i1 corresponds to
ω = ¡1, and s = γ corresponds to ω = iγ.
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In this plane all the poles (normal mode frequencies) are below the path of integration
and ω > ωn .

Now let’s go to the v plane. We integrate along (or close to) the real axis, but the
imaginary part of ω is positive and equals iγ (as can be seen from the graph above). Thus
the path of integration passes below the poles of this integrand at v = ω/k = iγ/k. This is
the Landau prescription.

Now of course we (almost) never actually do the Laplace transform, but in order to get
correct results we must always have the integration path in the v¡plane pass beneath the
poles at v = ω/k.

Now let’s evaluate the frequencies using equation 6. We can split the integral over vx up
into 2 pieces

1. The principal value:

P (I) = lim
ε!0

µZ ωr¡ε

¡1
+

Z +1

ωr+ε

¶
∂f̂0

∂vx

1

vx ¡ ω/k
dvx

2. The contribution from the pole.

To get the principal value, first integrate by parts:

P (I) =
f̂0

vx ¡ ω/k

¯̄
¯̄
¯

+1

¡1
+

Z
f̂0

1

(vx ¡ ω/k)
2dvx

The integrated term is zero, since f0 ! 0 as vx ! §1, and the denominator helps. Now
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let’s assume that the wave phase speed is large compared with the electron thermal speed.
Both f0 and ∂f0/∂v get small as v gets large, if f0 is a Maxwellian. Thus the integral is
dominated by the range where v ¿ ω/k. Thus we may expand the 1/ (vx ¡ ω/k)

2 factor:
µ

1

vx ¡ ω/k

¶2

=
k2

ω2

1

(1 ¡ kvx/ω)2
=

k2

ω2

Ã
1 + 2

kvx

ω
+ 3

µ
kvx

ω

¶2

+ ¢ ¢ ¢
!

so we have:
Z

P (I)dvydvz =

Z
f̂0

Ã
1 + 2

kvx

ω
+ 3

µ
kvx

ω

¶2

+ ...

!
dvxdvydvz

=
k2

ω2

µ
1 + 0 +

3k2

ω2

Z
f̂0v

2
xdvxdvydvz + ...

¶

=
k2

ω2

µ
1 +

3k2

ω2

kBTe

m
+ ...

¶

where the average of one component of ~v, squared, over the distribution function, is
kBTe/m, and the average of one component by itself is zero because of the symmetry of the
Maxwellian.

For the contribution from the pole, we have to deform the contour so that it passes under
the pole. It is a simple pole, and if the imaginary part of ω is small, we are getting 1

2
of a

circle around the pole. We are going around the pole counterclockwise, and so we get

+πi(residue at the pole) = πi
∂f̂

∂vx

¯̄
¯̄
¯
vx=ω/k

Putting it all together, we have:

1 =
ω2

p

k2

2
4 k2

ω2

µ
1 +

3k2

ω2

kBTe

m
+ ...

¶
+ πi

∂f̂

∂vx

¯̄
¯̄
¯
vx=ω/k

3
5

=
ω2

p

ω2

µ
1 +

3k2

ω2

kBTe

m
+ ...

¶
+ iπ

ω2
p

k2

∂f̂ (vx)

∂vx

¯̄
¯̄
¯
vx=ω/k

(8)

where f̂ (vx) denotes the distribution function integrated over vy and vz

The real part of (8) gives the usual dispersion relation for Langmuir waves:

ω2 = ω2
p + 3k2kBTe

m
where we took ω ' ωp in the second term. Now let’s assume that the imaginary part is
small, ω = ωr + iγ, γ ¿ ωr , and ω2 ' ω2

r + 2iωrγ, and let’s neglect the small correction
term 3v2

th/v2
φ to the real part. Then the imaginary part of (8) gives:

2iωrγ = iπω2
r

ω2
p

k2

∂f̂ (vx)

∂vx

¯̄
¯̄
¯
vx=ω/k

) γ =
π

2

ω3
p

k2

∂f̂ (vx)

∂vx

¯̄
¯̄
¯
vx=ω/k

If vφ = ω/k is in the tail of the distribution, the derivative ∂f̂ (vx) /∂vx is small and
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negative. Since γ is negative, the wave damps. Chen evaluates γ and gets:

γ = ¡0.22
p

π

(kλD )
3 exp

µ
¡1

2k2λ2
D

¶

for a Maxwellian. Thus the damping is very small for wavelengths that are much greater
than the Debye length (kλD ¿ 1). Damping is greatest when λ λD . This theoretical
result is amply confirmed by experiment.

2 The plasma dielectric constant

This theory gives us a lot more than Landau damping. Why did I call the denominator
of equation 7 ε? Let’s imagine imposing an external charge density ρext into the plasma.
Then the Fouriertransformed Poisson’s equation (4), expressed in terms of the potential,
becomes:

k2© =
1

ε0

Ã
X

s

qsn1s + ρext

!

As before we use the distribution function to get n1, and use the Vlasov equation to relate f1

to © (eqn 5):

f1s = ¡ qs

ms
k©

∂f0s

∂vx

1

ω ¡ kvx
Thus:

k2© =
1

ε0

Ã
X

s

qs

Z
¡ qs

ms
k©

∂f0s (vx)

∂vx

1

ω ¡ kvx
dvx + ρext

!

So

©

Ã
k2 +

X

s

ω2
s

Z
k

∂f̂0s (vx)

∂vx

1

ω ¡ kvx
dvx

!
=

ρext

ε0
(9)

where ωs is the plasma frequency for species s, or, integrating by parts:

k2©ε0

Ã
1 ¡

X

s

Z
f̂0s (vx)

ω2
s

(ω ¡ kvx)
2 dvx

!
= ρext

Thus we can identify

ε0

Ã
1 ¡

X

s

Z
f̂0s (vx)

ω2
s

(ω ¡ kvx)
2dvx

!
= ε

as the dielectric constant for the plasma, and our previous dispersion relation, or any
dispersion relation for electrostatic waves, is found by setting ε = 0.

We can also write ε = ε0 (1 + χ) , where χ is the susceptibility, and

χ = ¡
X

s

Z
f̂0s (vx)

ω2
s

(ω ¡ kvx)
2
dvx (10)

The sum is over all the particle species in the plasma.
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It is also possible to write the susceptibility as:

χ =
X

s

ω2
s

∂

∂ωr

Z
f̂0s (vx)

1

(ωr + iγ ¡ kvx)
dvx (11)

Then χ will have a real and an imaginary part, χ = χr + iχi. When γ ¿ ωr

χr =
X

s

ω2
s

∂

∂ωr
P

Z
f̂0s (vx)

1

(ωr ¡ kvx)
dvx

and if we do a Taylor series expansion, we get:

χ (ωr + iγ) = χ (ωr) + iγ
∂χ

∂ωr
+ ... = χr + iχi (12)

In most cases the imaginary part of χ is due to the contribution of the pole:

χi = ¡i
π

k

X

s

ω2
s

∂

∂ωr
f̂0s

³ ω

k

´

And thus from equation 12 we have:

γ =
¡ π

k

P
s ω2

s
∂

∂ωr
f̂0s

¡
ω
k

¢

∂χ/∂ωr
= ¡ π

k2

P
s ω2

s
∂

∂v
f̂0s (v)

¯̄
¯
v= ω

k

∂χ/∂ωr

However, we must be alert for situations where χ has an additional imaginary part.

3 The twostream distribution revisited

If the electrons are moving at a nonzero velocity with respect to the ions, then a
disturbance with ω/k < v0 in the lab (ion) frame falls on the electron distribution function
where the slope ∂f0/∂v is positive. These waves will be unstable. We previously found
kv0/ω » (M/m)2/3 > 1, which satisfies this condition.
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