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In Vlasov theory we use the full power of the Vlasov equation to discussthe evol ution of
aplasma, induding the effects of details of the particle velocity distribution on the evolution
of perturbations. We will study growth and damping of perturbations. The basic technique
is the standard " perturb and linearize" approach that we have been using. Our first topicis
the Landau damping of Langmuir waves.

1 Landau damping

1.1 Qualitative discussion

First aqualitative analysis. The effect arises from an interaction of theindividual particles
with the wave potential, which trandates at the wave phase speed vy = w/k. Some particles
travel faster than the wave and moveto the right in the diagram below. The totd energy of
an dectron is

E = lva —ep = lmv2 + Ug
One such particle that startswith Ug = Uy < ed,, ., Will ultimatey be reflected by the wave
potential: it will bounce back and forth in the potential well. But a particle with an initial
Ug > e¢,,,, Will go over the hill (with some loss of speed). Similarly, a particle going
dightly slower than the wave will moveto the left in the wave frame and will betrgoped. A
particle going a lot slower is not trapped but continuesto move to the left in the wave frame.
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A particlethat isinitially moving with v > v, and becomes trapped ends up with an average



speed equal to vs. Sinceits energy is decreased, the wave gains energy. But a particle
moving with v < vy that gets trapped gans energy (in the lab frame) and so the wave loses
energy. If v, isinthetail of the Maxwellian distribution, there are more particles that gain
energy than particles that lose energy. and so the wave loses energy- it is damped. Thisis
non-linear Landau damping.

To understand linear Landau damping we have to look at the initiaion of thisprocess.
Let’s see what happensto the particle velocities. (diagram from Chen p 255). The bottom
graph showsthe particle potential energy —e¢. The upper panel showsthe particle velocities
inthewave frame. A particleinitidly at A gains energy during the first quarter cyde of the
wave, while aparticle intially at C losesenergy. Similarly a partide initialy at B loses
energy during the first quarter cycle, while a particle at D gains energy. Since there are more
particlesat A than at C' and more at D than at B, (see distribution to the left) the particles
asa whole lose energy and so the wave damps. Thuslinear Landau damping isa start-up
effect. Thisisa clue- initial conditions are going to be important in our analysis.
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1.2 Mathematical analysis.

Langmuir waves are high-frequency waves so theions are unperturbed. The Vlasov equation
(plasfluid notes egn 9) with electrostatic fields onIy is
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Now we perturb and linearize. A new feature we have not used before is the perturbation to
the distribution function:
. £ (@) = fo (@) + £ (7)
Then, with £, = 0, and keeping only first order terms,
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Poisson’s equaion will allow us to relatethelntegral of f to E. Remember (plasfluid notes
egn 6):
n= [ s
Thus:

V-E= —nlz——/fl &' @
Next Fourier transform these two equations (or, equwd ently, assume that the perturbation is
proportional to exp @ (k ST — wt)).
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Choosing coordinaes with the z—axis along E, we have
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and wefind f; from (3).
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Substitute into the previous equation:
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where in the last line we assumed Iong|tud|nal waveswith E parallel to k. Then for E, not
zero, we have the dispersion relation:
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Now in principle the problem is solved. But how do we do that integral? There is no

dvydv, dv, (©)



problem with the integral over v, and v.. But sincew is, in general, acomplex number, we
are actually doing an integral along the real axis in the complex v,, plane, and such integrals
are path dependent unless the integrand is andytic everywhere. Our integrand has a pole at
v, = w/k. Astheimaginary part of w gets smaller, the pole approachesthe real axis, and we
shdl haveto deform our path to go around the pole. So how do we know what path to use?

Well, remember that L andau damping is aresult of initial conditions. So we should
really be solving an initial value problem, for which the L gplace transform usually works
better than the Fourier transform. So let’s go back to 1 and Laplace transform it in time
while retaning the Fourier transform in space:
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where F; isthe Laplace transform of f; and f; (0) is theintitial value of f;. Now we solve
for Fi -

sFy — f1(0) + ik - TFy — — —L(E,) == =0
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From Poisson’s equation (2), we get:
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Factor out the density and write fo = no fo to get:
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where | have used the definition
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and ¢ is the dielectric constant (see bel ow). Here we see that our previous dispersion relation
6isjust e (w, k) = 0, where e appears in the denominator of £ (E, ), with is replaced with
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To solvefor E,, we usethe Mellin inversion integral.
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The prescription says that we must choose a path of integration that passes to theright of all
the polesof £ (E.) . Note that these poles are just the zeroes of the denominator, i.e. the
roots of the dispersionrelation.
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Thus on theintegration path we have Re(s) = ~. Noting that this s is related to the
previousw by is = w, wehave Re(s) = Re (—iw) = Im (w) . Thuson the integration path
in thew—plane, Im (w) = 7.

Now we can take this information and use it in our previous problem. The poles of
L (E,) determine the behavior of the integral that gives E,., that is they determine the
behavior of the plasma. In fact, if we denote theroots of ¢ = 0 as w,,, (and assume these are
simple poles) then we can evaluate the integral to get:
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where s isgreater than Re (—iw,, ) until the limit is teken.
Now let’s look at the w—plane. Remember that w = is meansthe w—plane is rotated
90° relative to the s—plane: s = +oo corresponds to w = +ioo, s = 4100 corresponds to
w = —o0, and s =~ corresponds to w = 7.
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In this plane dl the poles (norma mode frequendies) are below the path of integration
and w > w,.

Now let’s go to the v plane. We integrate dong (or close to) the real axis, but the
imaginary part of w is positive and equals i~ (ascan be seen from the graph above). Thus
the path of integration passes below the poles of thisintegrand at v = w/k = iv/k. Thisis
the Landau prescription.

Now of course we (almost) never actually do the Laplace transform, but in order to get
correct results we must dways have the integration path in the v—plane pass beneath the
polesat v = w/k.

Now let’s evaluate the frequencies using equation 6. We can split the integral over v, up
into 2 pieces
1. The principal value:
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2. The contribution from the pole.

To get the principal vaue, first integrate by parts:
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The integrated term is zero, since fy, — 0 aswv, — +oo, and the denominator helps. Now

P(I)=
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let’s assume that the wave phase speed is large compared with the el ectron thermal speed.
Bath fo and 0 fy/0v get small asv gets large, if fo isaMaxwellian. Thus theintegral is

dominated by the range where v < w/k. Thuswe may expand the 1/ (v, — w/k)” factor:
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where the average of one component of v, squared, over the distribution function, is
kpT./m, and the average of one component by itself iszero because of the symmetry of the
Maxwellian.

For the contribution from the pole we have to deform the contour so that it passes under
the pole It isa simple pole, and if the imaginary part of w is small, we are getting % of a
circle around the pole. We are going around the pole counter-clockwise, and so we get

+mi (residue at the pole) = 7i 0/
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Putting it all together, we have:
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where f (v, ) denotes the distribution function integrated over v, and v,
The real part of (8) gives the usual dispersion relation for Langmuir waves:
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where wetook w ~ w, in the second term. Now let’s assume that the imaginary partis
small, w = w, +iv, 7 < w,, and w? ~ w? + 2iw,, and let’s neglect the small correction
term vi?h/vq% to the real part. Then the imaginary part of (8) gives:
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If v, = w/k isin the tail of the distribution, the derivative df (vg) /Ov, is small and
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negative. Since v is negative, the wave damps. Chen evaluates~ and gets:

=G (3)

for a Maxwdlian. Thus the damping is very smdl for wavelengths that are much greater
than the Debye length (kAp < 1). Dampingis greatest when A A p. This theoretical
result is amply confirmed by experiment.

2 The plasma dielectric constant

This theory gives us alot more than Landau damping. Why did | call the denominator
of equation 7 ¢? Let’s imagine imposing an external charge density p. ., into the plasma
Then the Fourier-transformed Poisson’s equation (4), expressed in terms of the potential,
becomes:
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As before we use the distribution function to get n,, and use the Vlasov equation to relate f;
to @ (egn 5):
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wherew, isthe plasmafrequency for species s, or, integrating by parts:
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Thus we can identify
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as the dielectric constant for the plasma, and our previous dispersion rdation, or any
dispersion relation for electrostatic waves, isfound by setting e = 0.
We can also writee = £¢ (1 + x), where x isthe susceptibility, and
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The sum isover all the particle species in the plasma.



Itisaso possibletowritethe suscqotibility as.
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Then x will haveared and animaginary part, x = x, + ix;. Wheny < w,
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and if wedo aTaylor series e<panson, we get:
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In most cases the imaginary part of  is due to the contribution of the pole:

Xi = —Z—Zwea f0< (—)

And thusfrom equation 12 we have:
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However, we must be alert for situationswhere x has an additional imaginary part.
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3 The two-stream distribution revisited

If the electrons are moving at a non-zero velocity with respect to the ions, then a
disturbance with w/k < v, in thelab (ion) frame falls on the electron distribution function
where the slope 0 fo/dv is positive. These waves will be unstable  We previously found
kuo/w ~ (M/m)*? > 1, which satisfiesthis condition.



