1 Radiative transfer etc

Last time we derived the transfer equation

dl,
- = Ov I’U
dr, s
where I, istheintensity, S, = j,/«, isthesourcefunctionand 7, = [ «, dl is the optical
depth.
The formal solution is
I (r)=1,(0)e "+ / S, (e (=) dr’ @

0
1.1 Special cases: No emission

If S, = 0, then theintensity isgiven by thefirst termin equation 1. The intensity decreases
exponentially. The Earth’s atmosphere provides an example. The optical depth varies with
angle ™ = 7¢secf where 7 is the otpical depth along a vertical path. Scattering is very
important in this situation, so we’ll defer further discussion for the moment.

1.2 Optically thin source
When 7 < 1, the solution reduces to:
LE) =10+ [ S S 10+ 8= 10) 4,0
0

where L isthe total path length through the source.
Example: HII region in theradio. The emission isdue to thermal bremsstrahlung (more
later)

Ju =6 x 10*39Tn1—2/2@*h”/’” ergl/(cm’ - s - ster - Hz) )
andintheradio (hv < kT, T =~ 10* K)
n? 1
oy 0.01m cm 3)
Thus for typical values of n ~ 7000 cm=3, T ~ 10* K, and v ~ 2 GHz, we have
70002

a, ~ 0.01 em ' =1.2x 107" em™!

106 x 4 x 1018
and for apath length of 1/2 pc,

r=12x10"¥x15x%x10® =0.18

Thus we can compute the emitted intensity by a strai ghtforward multiplication of emission
coefficient times path length.



1.3 Optically thick source
If the source function isa constant, and = > 1, then
I,(r) = I,(0)e " +/ S, (1" e (=) ar = L0)e ™ +8,(1-€)
0
~ S,

and so theintensity equal sthe source function in this case
1.4 Thermal emission

In thermal equilibrium, we reach a situation in which the intensity does not change within
the source, and thus
II/ = Su

Thus very large optical depth corresponds to thermal equilibrium. We know what the
intensity isinthiscase: it is just the black body (Planck) function:

2h13 ) c?
and thuswhen we have thermal radiation, the source function equds the planck function.
Thisisafundamental relation, sincej, and «,, involve only the microphysics of the emission
and absorption processes. It follows that

jz/ = O[,,B,, (T) (4)
Thus once we find j, we can find o immediately (or viceversa). That is how | obtained
equation (3) from equation (2).
Now the transfer equation for a medium inthermal equilibrium has become
dl,
dr,

Now R& L equation 1.13 for a uniformly bright sphere becomes:

2
F, =78, <£>
r

2
F=oT" <£>
T

whereo = 5.67 x 10~ %erg/(cm? - deg® -5)

Sometimes we use therelation I, = B,, (T},) to define atemperature called the brightness
temperaure 7. Radio astronomerslike to do this. The brightness tempertaure equalsthe
thermodynamic temperature only in the optically thick case. The general solution 1 may be
written as:

I,=B,(T)=5, =

B, (T)-1I1,(7)

and integrating over frequency

Toy =Twe ™ +T (1 — e_T)
or, if thereisno background source,

Th=T(1-¢")



from which it isclear that the brightness temperature can never exceed the thermodynamic
temperaure, and T}, approaches T as T — oc.

(Never isastrong word. Perhaps we shouldbe more careful. Exceptionsmay occur if
the sourceisnot at least locdly in thermodynamic equilibrium. More later)

low frequency limit:

hv/kT < 1. We obtain the Rayleigh-Jeans law:

202
B, (T) ~ ?kT
high frequency limit:
hv/kT > 1. Here we obtain the Wien law

2h13
B, (T) ~ CQV e W/kT

which shows that the spectrum decreases exponentially at high frequendes.
Wien displacement law
The peak of the spectrum isfound by setting the derivative to zero:
c_ZdBV 3v2 hy? e/ kT
2h dv - eh"/kT -1 kT (ehu/kT _ 1)2

— LQ <3 (ehu/kT _ 1) _ ﬂehy/k:r> _0
(ehu/kT — 1) kT
We can solve this equation numerically:
T
l—e ==
© 73
where © = hy/kT. Sincee™* issmall for z > 1, weexpect that  ~ 3. So usethisasa
first guess, and then evaluate

Tnext = 3 (1 — e_I)
The results are:

try T Tnext

1 3 3(1—e?) =2.8506

2 28506  3(1-—e2-%06) =2.8266
3 28266  3(1—e 2-8260) =2.8224
4 2,824  3(1—e2824)=2.8216
5 28216 3 (1— e 25%6) =2.82147
6 2.82147 3(1—e 2-8217) =2.82144
72,8214 3(1—e %) =2.82144

so theresultishy = 2.82144kT. The algorithm converges quickly.

Now try the same thing to find wavel ength of the maximum. Write the spectrum as

CES

B =
A et —1




wherez = he/AkT. Useasimilar numerical algorithm to show that
ZTrnax = 4.965

and thus
Amax? = 0.29 om - K
This is the Wien displacement law.
Suppose we cal culate the wavel ength corresponding to the frequency maximum. We’d
get L
C
. )\maxT = m =0.51cm-K
Why do we not obtain the same val ue for Ay in thetwo cases? |s one preferableto the

other?

2 The Einstein coefficients

In applying our results to atomic absorption and emission, it is convenient to use the
Einstein coefficients. They are defined asfollows:
The Einstein B — coefficient By; describes absorption:

Oy = 3501%

the function ¢, is the line profile function. It describes how the absorption is distributed
around the line center frequency. Broadening is due to“natural” broadening (radiation
damping), Doppler effect due to motion of the atoms, etc. We must also indude stimul ated
emission, described by B . Intermsof the Bs, the absorption coeficient is:

Z_;Q% (noBo1 —n1Bo)
where ny and n; are the number of atoms in the lower (upper) level respectively. The
Boltzmann relation relates the two populations:
oo 9L —nekr
no go
where g; and g, arethe statistical weights of thetwo levels. Thus

h
o, = —vno% <Bo1 - Bm%e_h”/kT)

oy =

47 0

Emission is described by the Einstein A coefficient:
. hv

Jv = _n1A10¢u
4

where A isthe transition probability per unit time for spontaneous emission.
Now we know that

Jv _ B (T) _ nyAqg _ Ao B 2hV3/02
= Dy = = - =
A No (BOI — Bloﬁ-e*hl//kT) -Zfllehy/kTBOl — BlO th/kT -1



Thus we obtain the rel aions

3
2hv
Arg = =—=Bi
or C2
A
Bijg = —A
10 = 57=4A10

Interesting things can happen when the populations are not goverened by the Boltzmann
relation, i.e. when some non-thermd process operates. For example, if the populationis
inverted (n1 > ng), the stimulated emission dominates and we can obtain maser emission.

3 Scattering

As we have mentioned, scattering can increase the intensity (due to scattering from other
directions) and can decrease the intensity (due to scattering out). We can define an emission
coefficient for scattering as

ju,scatt =nso,Jy
where n, isthe number density of scatterers and o, is the scattering cross section. Notice
that the mean intensity appears here, since photons going in any direction can be scatered
into the beam. For the moment | shall assume that the scattering cross section has no
dependence on direction. Thisis closeto the truth for Thomson (electron) scattering. Then
the transfer equation for scattering only becomes:

dl,
E = NsOy (Jl/ - Iu)
Including both absorption and scattering, we have:
dl, .
E = MNsOy (JV7[U)+JV705VIV
= nSGVJV + jl/ - (au + TZSO',,) IV
We can write
N0, = Qg
Then
dl,

— =y, +a, B, — (o, + as) 1,
S
Now let’s define a source function
agt, + a,B,

o, + g

Sy

so that the equation takesthe form

dl,
- = (au + as) (SV - Iu)
ds
Defining dr = (a,, + ) ds, weretrieve the previous transfer equation in termsof 7 and S.

The solution is more complicated, however, because S, dependson J,,, and henceon I,,.



Note here that 1/(«,, + «) is the average distance a photon will travel before being
removed from the beam by either an absorption or a scattering event.

1
| = —
o,y + oy
On the other hand, the photon will travel alonger distance

(6%
before being absorbed. The path will be a random walk. Each step of thewalk will end by
ascattering, with probability

Qs
Ps = o, + o
or with an absorption, with probability
VA
Pa = a, + as

Thus the source function is
Sl/ = (1 - pa)JV + paBu

3.1 Theory of random walks
A particle has amean step length £. Thetotal displacement is
N
5=3 5,
i=1

and the mean distance travelled is
l N N
>=< VD -D>=< \} <ZD1> . <Z D¢>

N N N
<\|>.D;-Di+> > Di-Dj>
=1 i=1j=1,j#i
= VNe=VNi=1L

sincethe directions of D; and D; are not correlated, and thus the average value of D, - D is
zero.

In our problem, the walk starts when the photon is created and ends when it is absorbed.
The step lengthis! = 1/ («, + a) . The probability that the path ends, at any one evert, is
pa - Thus the total number of steps expected is 1/p,. The mean distance travelled is:

o T v Jagar 1 1
Pa (all + O[S) Qay (Oé,, + as) (e%% (Oly + Oés)

Thus the effective optical depth due to absorption and scattering is
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