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1 General considerations

To consider the different possible normal modes of a plasma, we will usually begin by
assuming that thereis an equilibrium in which the plasma parameters such as density and
magnetic field are uniform and constant in time. We will then look at small perturbations
avay from this equilibrium, and investigate the time and space dependence of those
perturbations.

The usual notation is to label the equilibrium quantities with a subscript 0, e.g. no,
and the pertrubed quantities with a subscript 1, eg n;. Then the assumption of smdl
perturbationsis |n1 /ng| < 1. When the perturbations are smdl, we can generdly ignore
squares and higher powers of these quantities, thus obtaning a set of linear equationsfor the
unknowns.

These linear equations may be Fourier transformed in both space and time, thusreducing
the differential equations to a set of algebraic equations. Equivalently, we may assume that
each perturbed quantity hasthe mathematical form

ny = nexp (zlg z— iwt) 1)

where thereal part is implicitly assumed. Thisform describesawave. Thg amplituden isin
general complex, dlowing for anon-zero phase constant ¢,. Thevector k, called the wave
vector, gives both the direction of propagation of the wave and the wavelength: k = 27/
w istheangular frequency. There is a relation between w and k that is determined by the
physical properties of the system. The function w (E) iscalled the dispersion relation for
thewave.

A point of constant phase on the wave form moves so that

where the wave phase velocity is
Ty = %12 @)
The phase speed of a wave may (and often does) exceed the speed of light, since no

information is carried at v,. Information is carried by amodulation of the wave, in either
amplitude or frequency. For example, awave pulse may have a Gaussian enveope. For any



physical quantity w,
u(z,t) = Ae—xz/a2eik:z—iwt
Thus can be Fourier-transformed to yield a Gaussian in k& —space.
A general disturbance of the system may be written as a superposition of plane waves.
With z —axis chosen aong the direction of propagation for simplicity:

1 Foo .
t) = — Ak 1kz—zwtdk
u (x,t) m[m (k)e
But w isrelated to k through the dispersion relation:

dw
w:w(k):wo—i-(k—kg)% k0+~--
where k is the wave number at which A (k) peaks. Then theintegral becomes:
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Thus, apart from an overall phase factor, the disturbance propagates at the group speed
_dw
dk
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Information travelsat this group speed.

Additional terms we have neglected in the exponent (involving the higher derivatives
d™w/dk™) giverise to pulse spreading and other factors generdly referred to as dispersion.
(Moreon thisin Phys704!) Hence the name "dispersion relaion".

Our goal will beto identify the different wave modes that occur in the plasma, and to

find the dispersion relation w (I_é) for each. If the frequency has an imaginary part, that
indicates damping or growth of the wave

2 Plasma oscillations

In thiswavewe assume that theinitial condition isa cold, uniform, unmagnetized plasma
withn = ng, T = 0 and vy = 0. Then the equation of motion is:

B - .
mng (Eﬁl + <171 . V) 171> = —engF

We ignore the second term on the left, because it involves a small quantity squared. Then
we use the assumed wave form to obtain

—

—jwmu; = —ek 4
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Next the continuity equation gives

0 -
E(no—Fnl)—FV'(no—‘—nl)ﬁl = 0
d - -
Enl +7’L0V~’l71 +V-(n1171) =0

We used the facts that Ony /0t and 6710 are zero. Again weignore the last term because it
involvesthe product of two smdl quantities. Then:

—iwnl + TLQZI; "171 =0 (5)
Or, solving for nq,
k-7

(6)

ny = no

Thus the density is not perturbed unless #; has a component along k. This means that
transverse waves with v, perpendicular to £ do not perturb the plasma density.
Finally we use Poisson’s equation, since thisis ahigh-frequency wave:

— — e e
V E=—— [TLQ — (no +7’L1)] = —="N1
€o €0
This equation is already linear, and we get:
ik B = —=n, @)

€0
Now we dot equation (4) with & and substitute in from equations (5) and (7).

—jwmk -7, = —ek-FE
. Wy e
—wm=—— = —e| —=—nq
o 1€0
wny 62
wm=— = =n,
o €o
Now dther n; = 0 (not the result we want) or
2
nopeé
w? = = ®)
P eom

The frequency of the disturbance is the plasma fiequency w,. Notice that the result is
independent of k£. There isno phase speed or group speed: the wave is an oscillaion that
does not propagate. Aswe shall see, introduction of a non-zero temperature causes the
wave to propagate

We can also see from equation (7) that the electric field is out of phase with the density
by 7/2, while the vel ocity isin phase (equation 6).

This osdllaion is afundamental mode of the plasmaand has many ramifications. Our
next step is to begin to investigate its importance.



3 Electromagnetic waves in an unmagnetized plasma

To understand the importance of the plasma frequency a bit more, let’s look at the
propagation of ectromagnetic wavesin the plasma. Maxwell’s equations are already linear.
We have Poissons’ equation for E' (7) and B,

ik-B1=0 9)
Faraday’sL av
ik x E =iwB; (10)
and Ampere’slaw
i x B =g (]+ iweoﬁ) (1)

The current in the plasmais due to the electron and ion motions:
7 = noed; — (ng + m) ev,
For high frequency waves we may neglect theion motion (v; ~ 0) since the massive ions

do not respond rapidly enough as the driving force due to E changes. We also ignore the
product of the two small quantities n; and v, to get:

-

J = —ngeve (12)
so that Ampere’slaw becomes:
ik x él = U (—noeﬁ’e + iw50E> (13)
Finally we need the equation of motion for the electrons:
—iwmi; = —e (E—i—ﬁe X él) (14)

which reducesto equation (4) when weignore the non-linear term.
Equation (6) shows that the density variations are zero for a transverse wave

U perpendicular to E) and Poisson’s equation becomes’ - E = 0, which isconsistent with

the assumption of atransverse wave with 7 parallel to £ (equation 14) . So let us look for
transverse waves.
Cross equation (13) with k to get:
ik x (E X él) = o (—ner X Ve +iwegl§ X E)
I_ﬂ' (E . El) — k2§1 = —MOEE X ’178 — /J,OWEowgl
(2

where we used Faraday’s law. Further substitutions from equations (9) and (4) give:

d no€ - EE —
*kQBl = 7/107(_)]{1 X (’me) — u050w2Bl
62

~ 5=
= pono——wbB — poeow” By
wm

= poco (wj —w®) By (15)



Again we argue that the solution §1 = (0 isuninteresting. The solution with non-zero B has

W= k202+w12, (16)

w = ,/k202+w§ (17)

Thus & high frquencies (w > w,) we have the usual vacuum relation w = ck.

However, the wave number

2

2
w wp

kj =
C
becomes imaginary (k = iy) when w < w,,. The wave form becomes
exp [i (i) © — iwt] = e~ 1Te™!

The wave does not propagate, and the disturbance dampsas exp (—yx). The waves have a
cut-off atw = w,y.

An electromagnetic wave propagating at w < w, isable to excite plasma oscillaions in
the plasma, thus draining energy out of the wave and into the motion of plasma particles.

Hence the wave damps.
In the ionasphere with n ~ 102 m~3, the plasmafrequency is

P 1 (1012 m=3) (1.6 x 10-19 C)?
P21\ (8.85 x 1012 F/m) (9 x 1031 kg)

and waves at lower frequencies do not propagate through the ionosphere. Thisisan intrinsic
limit on our ability to do radio astronomy from the Earth’s surface |f we do build a base on
the moon, aradio observatory will quickly follow!

The refractive index of the plasmais

=9.MHz

n==—==—=4/1-=£ (18)

and isless than onefor all w < oo.
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Snells’ law thus predicts the phenomenon of total external reflection when an EM wave of
frequency w < w,, isincident on aplasma Waves incident on the ionosphere from Earth at
< 9 MHz are reflected back to earth. X-raysincident on glass from air are also reflected-
that is how x-ray mirrors (such as thosein the orbiting x-ray observatory AXAF) work.
At the high frequencies of x-rays, the dectrons in the glass behave like free electronsin a
plasma.

The group speed is found by differentiating equation (16):

dw 9
2w=— =2k
wdk‘ C
Thus
d 2 w?
Ug:_wzc_zc _r (19)
dk g w?

andisless than c at all frequenciesw > w),.
Equation (15) may dso bewritten

k2g1 = u0€w2§1
and thus we obtain another expression for the plasma dielectric constant, this onevdid for
high-frequency transverse oscillations in a field-free plasma:

2
€=¢g (1—%5) (20)

Notice that for w < w),, the dielectric constant is negative. The refractive index isimaginary,
corresponding to absorption of the wave

4 Langmuir waves

Let’s go back and reconsider the plasma oscill ations (longitudinal waves) but now with a
non-zero T'. The momentum equation (4) has an extraterm due to the pressure gradient:

—iwmngty = —engFE —ikP;



We must add the equation of state

P=Kp’
which becomes, to first order,
Po+ P = Kpg+p) =Kp <1 +7&> =Po <1+vﬂ>
Po Po
P,
P = y=p, (21)
Po

Poisson’s equation and the continuity equation are unchanged. Dotting the momentum
equation with k, we get:
fiwmnol; U = fenolg E — ik*P;

and then using equations (21), (5) and (7), we have

. wn ( e ) 9 Py

—twmng=—— = —eng | ——ny | —tky—n1m
o 1€0 Lo

leading to the dispersion relation

2 2 ke

w :wp—l—szy

= wf) + k?‘ci (22)

where
k B Te

Cs = Y
m
is the electron sound speed. Equation (22) is the Bohm-Gross dispersion relation for
Langmuir waves- longitudinal waves in aplasma. Noticeits similarity to equation (16) — the
sound speed replacesthe speed of light. T he phase speed of these waves is

2
w [99)
=g =\ e

and the group speed is

_dw_cfk_cf
Y dkiwivqg

5 Sound waves

51 Fluid sound waves

If we perturb and linearize the momentum equation and the continuity equaion for a
field-free plasma, we get:

o >~ B
—iwp Ty = —iky==p, ()
Po
and B
—iwpq + ik - (pyv1) = 0 (24)



Dotting the first equation (23) with % and substituting into the second (24), we get:
K2 P

—wp1 + py——"r—p1 =0

WPy Po

and the dispersion relation is

P
w? = k:zfy—o = k?c?
: Po
waves with vy = vy, = c,.

These waves rely on collisionsin the fluid to provide the restoring force.
5.2 Ion sound waves

Even if collisions are unimportant, sound waves, being longitudinal waves, generate density
fluctuationswhich in turn generate el ectric fields that can provide the necessary restoring
force. When ion motion is involved, we know that the waves must be low frequency, so we
can usethe plasma approximation, n, ~ n; ~ ng. We are still assuming that thereis no
magnetic field.

The momentum equationfor theionsis:

Mng {%m n (51 .6) 171} = engE — V (P + P; 1)
and for the dectrons
mng [%171 + (171 . @) 171} = —enoE — ﬁ(Pe + Pey )
The continuity equation is
ﬂnl—knoﬁ-ﬁl +§-n1171 =0

ot
and linearizing, we get:
E?’ll = —ngﬁ . ’171
Thus
0

- (m - m) = *Tboﬁ . (7731 - 171‘1)
Thus if theion and el ectron vel ocities differ, the densitieswill become different too. Thus
the plasma approximation also requires v.; = ¥;; (at least to first order).

Using this result, we add the two linearized momentum equations. The electric fidd
terms cancel, leaving:

0 -
(m + M)n()a’t_ﬁ = —V (.PiJ + Pe,l)

—tw(m+ M) nety = —ikna (viksTi + v kBTe)



(Compare this equation with (23)). Dot with 1_5, and combine with equation (6) to get:

—iw (m + M) ngwﬂ = —ik*n, (viksT: + v kpTe)
ng
kT kgT.
W = k2<% B ) (25)
m+ M

There are several things to note abouit this result.

1. Itisessentially identical to the result for fluid sound waves even though & a microscopic
level there are profound differences. The coupling hereis el ectrostatic not collisional.

2. The electrons move very rapidly, and the distribution may be assumed to be isothermal,
7. = L.

3. The electron mass is negligible compared with the ion mass in the denominator.
However, Vlasov theory (a detailed study of the effect of the particle velocity
distributions) shows that the waveis strongly damped unless the electron temperature
gredly exceeds the ion temperature. Thus the ion sound speed is determined by the
electron temperaure and the ion mass.

kpT,
M

(26)

Vis =
We may now consider the electric field necessary to effect the coupling. Poisson’s
equation is:
iE~E:k2¢:€i(ni— Ne)
0
Now we allow for small diff erences between the electron and ion densities. The ion density
is given by the continuity equation:
k-v

n; :n0+ Mo

while the electronsrespond rapidly to the electric field, and so follow the Boltzman relation:

e e
Ne = N €XP T ~ng |1+ T

Thus

Rearranging, we get:

e R

co kT, € W
We should recognize the second term in the parentheses as 1/A5. Now we rewrite the
momentum equation for the ions, substituting this expression for ¢ in the electric field term



(E = —Vo = —ik¢)

—itwMnot1 = —enoi/;:}é — iEn17ikBTi
I eng k - 0y 1 9
—wMnok - = - —k kg T;
ol e w <1+]/WA%> e
n1 eng N 1 9
wMnow— = en + k*nq1vy,. kgT;
0 Un) 0 Eo No (1 +1/]€2)\%> 1B
2 _ 2 ( 1 ) 2 2ikpTi
wo = e s k
MS() 1 + 1/l€2/\D AI

2
_ (ke Ao
M 1+ k223

where Q,, is the ion plasma frequency.
The numeraor in the second term is:
€0 kBTe€2 No o Te

eng € Mey BM

Thus the new result is identical to the previous one except for the denominator 1 + k2A%.
Thus the correction is necessary only when kA p isnot small, that iswhen thewavelength is
less than or equal to the Debye length. The full wavelength iswithin the region where we
would expect the plasma approximation to fail. When kAp > 1 wefind

2
X202 =

w0,

and we have oscillations at the ion plasma frequency. The wave reduces to plasma
osdllations of theions.

2
k x debye length

Dispersion relation for ion sound waves

10



6 Electrostatic waves in magnetized plasmas

Now we ook at aplasmathat has auniform magnetic fidd By in theinitial, unperturbed
stete. Themotion of the plasma particles is affected by the magnetic field when they try to
move across B. Thuswe expect to find that waves travelling along B and waves travelling
across B will behave differently.

Electrostatic waves are longitudinal waves, and thus when el ectrostatic waves propagate
along the magnetic fidd, the particle motions are dso along B, and these motions are not
affected by the magnetic force  Thus the previous dispersion relations for Langmuir waves
(egn 22) and ion sound waves (eqn 25) are unaffected. We obtain interesting new eff ects
when the waves propagate perpendicul ar to the magnetic field.

Note that for electrostatic waves, thereisno perturbation to the magnetic field (equation
10) because £ isparallel to k.

6.1 High frequency electrostatic waves propagating perpendicular to
By

We begin by taking the el ectron temperature to be zero, aswe did when studying Langmuir
waves. With a non-zero magnetic field, we have an additional term in the eguation of
motion (4): . .

—iwm? = —eE — e?' X By (27)
The additional equations we need are the continuity equation in the form (6) and Poisson’s
equation (7). Asusud, we dot the equation of motion with £ :

—iwmk -7 = —eE-E—eE~(17>< Eo)
— _eE.E—eéo-(Exﬁ)
The next step is to get k x @ from equation (27):
—iwmk x T = fel;XE_'—e/;X(UXéo)
= O—eﬁ(g~éo>+eéo(g'ﬁ>

where we used the result that k x E = 0 for thesewaves. Also, for propagation across 5y,
k- By=0. Thus

B, (E- 77)

—iwmk T = 76E~Efego~ -
—itwm
. 2 k-E
k- 17( - “’—2) - = (28)
w wm

11



Finally we substitute in from the continuity and Poisson equations, to get

N1 w% € —€eng
—_— 1= — — - —_—
ng w wm 1€0

W —w = W

Thus we obtain anew oscillation frequency, cdled the upper hybrid frequency:

wil = wg + wi (29)

Itis “hybrid” becauseit is amixture of the plasmaand cyclotron frequencies. It is ahigher
frequency than either because the additional restoring force leads to a higher oscillation
frequency. As the electric field in the wave sets the particles moving across B, the magnetic
force causesthemto gyrae. Theresulting particle orbitsare elliptical. .

We might ask what hgopens when the wave propagates at afinite angled < 7/2 to B.
We would expect the magnetic forceto act, but less strongly, and thus the frequency will
have an intermediate vdue. We find that as¢ — 0, w — thelarger of w, and w.. When
we > wp thereisa second wave at 6 = 0 (the plasmaoscillation at w = w,,). In fact there
are two oscillations at all intermediate angles, as shown in the figure bd ow which shows
w/w, versus cos 6. (See Problem 4-8). (We should be suspicious of theregion near w = 0
because ion mation will becomeimportant here.)

257

157
viwe ]
1]

0.57]

0.2 0.4cos theta0.6 0.8 1

wp = 2w,

The waves do not propagate with T = 0. As for the Langmuir waves, they do propagate
when T" > 0, but the analysisis more complicated and we leave it for another day.

6.2 Electrostatic ion waves propagating perpendicular to By

Here we must include theion motion, but we expect to use the plasma approximation. We
have the two equations of motion, for the dectrons

—iwm¥ = —eFE — e?' X By

12



and for the ions
—iwM© = eE + et x éo

(same ¥ because of the plasma approximation) and

k- ¥

nyp == _Tno
w

The method is the same as in the previous section. Dot and cross the equations of motion
with k to get both components of 7. We obtain two versions of equation (28), one for the
ionsand one for the dectrons:

7a(1 w? ek - E
.U — — =
w? wm
o 02 ek E
Fof1-—=) = — 30
”( w2> i (39
Now divide the two equations, to obtan:
(W2-w?) M
W2-0Q%) m
or
M M 1 1 e? B2 M
2(1L=) = =02 2 _ ,2p2 — |20 (£
CL)<+m> m etwe=e O<Mm+m2) Mm +m
Wiy = welke (31)

Thisis the lower hybrid frequency. In the previousgraph, the lower branch goesto w g
not zero.

These waves are dmost never observed experimentally because it is necessary that they
propagate exactly across 3, and experimentally that is impossible to achieve. Suppose that
the waves propagate at an angle 7 /2 — 6 to B, where < 1. Electrons are free to migrate
along B, and do so very rapidy. Because the wave is not exactly perpendicular to B, the
electrostatic potential is not constant along B and the electrons will establish a Boltzmann
distribution by travelling long distances along the field lines. Thus we should replace the
electron density with ny . = nge¢/ kT, while retaining equation (6) for the ions.

(Look at the electron density we used before. Itis

k- no ek - E nok?¢
n1 = —_—Nng = =—
w w

1_%) —im (w? — w?)
w

wwm (
ep k% (kpT,/m)
OkpT, i(w? —w?)
distance travelled per period at veth ) 2
wavdength

The factor in parentheses must be much greater than one if the argument we have given is
correct, and SO ngojtzmann 1S Much less than our previous n; for the electrons.)

= TBdtzmann (

13



Now we use the plasma approximation:;

k-v ep
N; = =———nn = Ng

w k’BTe -
and combine with the equation of mation (30) for theions:

Te

Pl 22\ _ ki E_ck?6 el k ksl
Y w2 ) WM WM WM w e
Thus T
w?— 0 = kQ% = k*vl (32)

where the speed on the right is the ion sound speed (26). These waves are called
electrostatic ion-cyclotron waves. Unlike lower hybrid oscillations, they are easily observed
experimentally. They propagate with phase speed

w W
R VeEs

do _ o}
dk Vg
Dispersion relaion (32) has the familiar form we have seen before.
Exactly how close to perpendicular to B does the wave vector need to be to get the lower

hybrid oscillations?

and group speed

N

E

d-el
d-ions \
From the diagram, we need
dions _ Uth, ions _ m T;

sinf < —
delectrons Uth, elec MT,

With equal temperatures, wefind § < /1/1837 = 2 x 10~ 2 radians = 1. 1°.

14



7 Electromagnetic waves in magnetized plasmas

7.1 Electromagnetic waves propagating across B

Electromagnetic wavesin an unmagnetized plasma are transverse and thus do not generate
density fluctuations. Thus the plasma particles aff ect the waves through the currents that
they generate. The sameis true for magnetized plasmas, but we will have to be alert for the
possibility that alongitudinal component of the waves may be generated aswdl.

An additional effect that we did not have to consider with electrostatic waves is the
pol arization.

7.1.1 The ordinary wave.

'S

When the wave propagates perpendicular to Eo, one polarization has its electric field
vector parallel to By. Thisiscalled the ordinary (or “O” mode) because the plasma particles
can move freely along By, as they are accderated by the electric field. Thus the magnetic
field has no effect, and we regain the dispersion relation (16). We can see this explicitly
from the el ectron equation of motion:

—iwm® = —e (E -~ éo) (33)
which givesrise the the current density
j = —nget
and then Ampere’slaw gives
k x (lex El) = kx (,uoff z%E)
F(F-B) ~ KB = pofx (— Oea) _%231

And since k - B; = 0 (remember that V - B, must be zero too), we obtain the wave
equation:

w? _, R
(— — k2> By = ipgnoek x v (34)

15



From the equation of motion:

—iwmk X T = fe{EXE+EX(5X§0)}
= —ewél—e{ﬁ(/;-éo) —EO (Eﬁ)}
= —ewhB

since k is perpendicular to Eo by assumption, and k- @ = 0 follows immediately from
equation (33). Substituting into Ampere’slaw, we find:

—

2
. B
<W_2 N k2> B = iﬂonoee‘w -
c twm
w? = wf) + k2 (35)

7.1.2 The extraordinary wave

Now we look at the case of polarization perpendicular to Eo. Heretheelectric field drives
electron motion perpendicular to By, and thusthe magnetic force comes into play. Notice
also that as the electron gyrates, it will have a component of velocity along &, and so the
wave cannot be purely transverse- it is amixture.

N

B

oS
I

O

Let’s begin by solving the equation of mation, because the results will be useful for other
wavestoo. Choose a coordinate system with z—axisparalld to By. Then the z—component
is the easiest:

—iwmv, = —eb, = v, = —iLEZ (36)
wm
The z-and y-component equations are coupled:
—jwmv, = —ek,—e (17 X EO) = —el, —evyBy
—twmuy, = —el, —e (17>< EO) = —el, + ev, By

16



Thus, using the second relation in the first,
—eFE, . B
—iwmu, = —eEx—eBUM
—twm

B
Ve = - E,+ € g

v = iy (37)

and then using the v, equation

vy, = =L, +

P (38)
From these relation we obtai n the components of the current:

2

e w:
j. = —nev, = ine=——2F, = icg==F, (39)
wm w

o — ————
—MNev, = = B)

w?2
wmo1-2f 1-2%

w2 (iE, —<F,
co—L2 y—w2 (41)
w 1 &

(40)

; ne? ib, + 5w <2E1 +—hw’Ey>
x 0
w w

Jy
— =%
Note theresonance at w = w..
Now we are ready to find the dispersion relation for the extraordinary (X-) wave. First
we choose the x —axis along k , with BO in the z—direction, and E inthe z — y plane. Then

Ampere’s law becomes:
w2 — . - -
(—02 — k2> By = —iupgk x 3

Here the wave number and current lie in the z — y plane, so B; isin the z— direction. (We
already know B; hasno z—component, because its divergence iszero.) Thus

w? 2 . . iy — _wr'E
= - k%) B, = —ipokjy = ’L,U,Oks() —2 (42)

[y

w

To find the components of £, we use Faraday’s|aw:

ExE = wh

17



We are short one equation, and that must be Poisson’s equation, which determines the

longitudinal component of £

. nie e k-0 e k
kb, = == ——nym = — =NV,
€o €0 w €0
I e s
- 2
g wwm 1 — %g
2, w@o
w 1 — %5.
Thus, rearranging and using Faraday’s law (43):
2 2
B (1 %% &) - w9
’ w? w2 iw w2 Y
2 2
w We W We W
H [ S ) = ——
ET<_?) o 2 Fy lkaZ

w? w? iw2( w?
R 1-=<)B, = ——=L1y P A e
<c2 )< wz) 2w \“"“w(l

2

G wn o wpwl 2 2
(W — ) = wf,l 35235"":5;:? (w2 wg)
(1-%) (1-2#) (w? — w})

So the dispersion relaion for the X-wave is

w
2 _ 212 2
v T

(44)

OK, let’s investigate this dispersion relation. First notethat forw > w, wy we retrieve
the zero-field result (16), and as w — oo, we get back the vacuum relation w = ck. Now
let’s see whether there are any stop bands — bands of frequencies at which the wave cannot

propagéte.
Cut-offs occur where k = 0. The frequenciesare then given by:

2 2(w2—w]2)) o 1%

W™ =w = w
p 2 _ 2 P w? 2
(w w}) 1—=%— %2&
Rearranging and dividing, we find:
ﬁé B w? /uw?
w? =1- w?

18
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or

and taking the square root:
_ w_fz’ = iwc
w? w
There are two roats, so we get two quadraticsfor w :
wQ:I:wwcfwf,zo (46)

with the four solutions:
Fwe £ /w2 +4w?
W = 5)
Negative frequencies do not have physical meaning, so the two meaningful solutionsare

Wi :%(\/wg+4wg+wc) (47)

and
wL:l(,/wg+4wg_wc) (48)
The subscriptsrefer to R for right and L for left. We'll see why |ater.
Lety = w/wp, we/wp =2, wy Jwpy = V5. Then we have%f- = %(\/§+ 2) =2.4142
and - — 4 (/8 —2) = .41421. Then the plot of w versus k lookslike:

(A)p
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11

1 2 X 3 4
w versus k for the X-mode

o

Thereisastop band beweenw r and wy and again below wy,.
We can gain more insight by looking at the refractive index:

c2/€2 wz (w2 _wz)
o — _— D
n? = > =1-=2 o)

2 (@ )

w? (w2 —w}) — WP (w2 — wf,)




Comparing with equation (45), we see that we can factor the numerator:
(W? — w?) (W2 —w?)

w? (w? —w?)
This confirms our previous result tha there are cutoffs at wr and wy,, and shows that the
stop bands (n? < 0) ocaur for wp > w > wy andw < wr. (To obtain these results, note
that wg > wgy > wL)

Thereis also aresonance (n — o) a w = wgy . (Also n? — —co atw = 0, but this
one arises because we have ngglected ion motion.) Notealsothatn — 1 asw — oo.

The plot looks like

n? =

1 2 3 wHAwp 5 6 7 8
n? versusw for the X-wave

7.2 Electromagnetic waves propagating along Bo.

Transverse waves propagating along qu have the electric field vector in the plane
perpendicular to B, and thus the dectron motions, while aff ected by the magnetic force,
remain transverse. Thus thiswaveis purely electromagnetic. We again choose our z—axis
along the magnetic field direction. We can use our previous results (37) and (38) (or
equivdently 40 and 41) for the particle motions. Now Faraday’slaw gives both components
of £, but there are also two components of B :

kEE, = —wB, ad kE, = wB,

Ampere’s law (34) has two components. Using relation (38) for the electron vdocity, the
x—component is

w?
(—2 - k2) B, = iugkj, (49)
C
2 k w2 (iE, —“=FE,
_ (% _ k2> —EB, = ipgkeo—2 (“/—:2 (50)
w w 1<
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and similarly for the y—component

OJQ 2 . .
? -k ) By = —ippkjs (51)
2 k E,.+ E,
<w_2 - k2> -E, = —mokao—ﬂ <_“_Z 5 J) (52)
C w 1— Z&
Rearrange (50) to get:
2
iw? (iB, - %Ew) S ( “’—2) E,
W’ UE +E, (w — (w? — k2c?) <1—%>>:0 (53)
and (52) becomes

2
—iw? ('LET—I— %EJ = (® — K22 ( N W_Q B,

2

wy L o We
E, (wi — (w2 — k2c2) <1 — E)) — Z“’zzijy =0 (54)
For a non-zero solution for £, and E,,, the determinant of the coefficientsin equations (53)
and (54) must be zero, so:

we\ 2 w2\ 1?
(wij) - {wi — (w* = K>S (1 - w_;)} =0

or, taking the square root,
We wi
OJQU + {wi — (W = k*¢?) <1 — —>}
2
2 Ye 2 _ 122 _We
wp(lj:w) (w kc)(l w2>

w? = (w2 — kQCz) (1 + &)

p

and so we obtain the dispersion rd ation
2
2
w 24 (1 T _E) (55)
Thereisaresonance at w = w, for one of the two possible frequencies. Note again that
for w > w. we get back the result for an unmagnetized plasma, and we retrievew = ck as
w — oo. The cutoffs (k = 0) areat

w2

W = ——ee
(1+ =)
We
w2<1:|:j> = wi

which isequaion (46), with the sametwo solutions wy (bottom sign) and w;, (top sign).
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Now let’s solve for the el ectric field components, using equation (53) with our solution for w

inserted:
2 We 2 Wy w2
a2 —_ ‘e _
zwpwEI—f—Ey w”_(lzt%ﬂ) (1_w2> = 0
g 1B, [1 - (mﬂ)} -0
w w
i=E, + B, (+=) = 0
w w
E, = TFiE,
This solution correspondsto circularly polarized waves. If
E, = Fycoswt = Re (Eoe_i“t)
then
E, = Re (quEoeﬂ“”t) = FEy Re (icoswt + sin wt)

= FEjysinwt

Thus with the plus (lower) sign, the E vector rotates counter-clockwise, and with the minus
(upper) sign the vector rotates dockwise. The waves have drcular polarization. Putting
your thumb along the direction of propagation (the z—direction), your right hand gives the
direction of rotation with the plus sign- these are right-hand circular waves. Conversely,
with the minus sign you need your left hand- these areleft hand circular waves. Thus the
RH circular wave has a cutoff at w and the |t hand circular wave has acutoff a wy,.

For theplot, let w, /w. = 2.

0 1 2 ck/wp 3 4 5
w versus k for R and L circular waves

The refractiveindex is: 5 s
2k.2 w?/w
= CR el (56)
w? 1+
and thereisaresonance at w = w, for theright circular wave. Inthiswavethe electric field
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circulates in the same direction as the el ectron, and when w = w,. thefield is ableto transfer
energy to the electron continuously, producing the resonance. Below we shall show that
when ion motion isinduded the | &t circular wave exhibits aresonance at §2..

—

0: T T 1 UL >k I B L L L LA R B L
] /i /2 whe 3 4 5
_2_' /

n? varsusw /w, for R (dashed) and L circular waves

wp fwe =

o
[
o
g ]
s ]
(9]

3,
N+
o]

V3 op/we =1/2

n? versus w/w.,

7.3  Observational effects

The dispersion relations that we have derived for EM waves propagating in plasmas have
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interesting observational consequences.

7.3.1 Plasma dispersion

When a signal has a well-defined time-structure, the dispersion reation can aff ect how we
observeit. For example, radio pulsars produce a wdl-defined pulse over arange of radio
frequencies ranging from MHz to GHz. The different frequenciestravel at different group
Speeds, so the pulse does not arrive & Earth & the same time & each frequency.

In an unmagnetized plasma (or for w > w.) we havethe dispersion relaion

and thus
dw
Q== = 2kc?
W= c
dw c w?
i w—wl=c 1—;%
2
~ _ =P
~ c( 5 2) forw > w,

Thus the pulses at higher frequencies travd faster, and arrive sooner, than those at lower
frequencies.

In the interstellar medium, the dectron density is about 0.05 electrons/cm?, so the
plasma frequency is

;o= 1 [ner 1 (5 x 10 m=3) (1.6 x 1019 C)?
P 2r\egm 2w\ (8.85 x 10-12 Fim) (9 x 10-31 kg)
= 2. x10%Hz,

much less than the observed frequenciesin the radio band.

The magnetic field is about 10~ Gauss, s0 w, ~ %1076 G=18x10°Hzis
also much less than the observed frequencies.

The time takenfor a pulse to reach earthis

L
==
Vg

where L isthe distance to the pulsar. The difference in arrival times between two pulses at
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frequencies f; and f> is

AT = = _ =2 _Z R ]

_ Ll _ L

For a typical pulsar & a distance of approximately 1 kpc= 3 x 10'? m, the time delay
between two pulses at 1 and 5 Ghz is

3x10°m 2 1\ 1
AT = ——— (2. x10°H 1——
6% 107 mi (2 X 2) | Tz %

= 0.192s

This time delay is easily detectable.

Since fp2 x ng, measurement of the time delay provides ameasurement of the plasma
density along the line of sight to the pulsar. See. a3, The Astrophysical Journd, Volume
645, Issue 1, pp. 303-313, Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 385, Jan.
20, 1992, p. 273-281

7.3.2 Faraday Rotation

When awave travel s along the magnetic field, we have shown that the normal modes are the
left-and right circularly polarized waves. A wavethat is emitted as alinearly polarized wave
will travel as the sum of two circularly polarized waves. We write the dectric field vector
for awavetravelling in the z—direction as:

—

E = EoXexp (ikz — iwt)

where asusual the real part is assumed, and we have chosen the x—axisalong the electric
field direction. We decompose the wave at the source into two circularly polarized waves:

= X+iy = X—iy
E = Fy|—=+4—
(0) 0 < 5 + 5 )
= ER + iEL
Theright and l€ft circularly polarized waves have different phase speeds, so at some distance
z from the source, we have:

E(z) = E, <x4;zy exp (tkrz) + x;zy exp (szz)> et

o

0O | &

(exp (ikrz) + exp (ikp2)) + z% (exp (ikrz) — exp (zk:Lz))> et
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The angle between the electric field vector and the x—axisisgiven by:
ton 0 — E, _ & (z:kRz) — exp (szz)
E, exp (ikgz) + exp (ikp2)
whichis not zero for z > 0 if kg # k. Thus the wave vector rotates as the wave
propagates. This phenomenon iscalled Faraday rotation.

We use the dispersion relation (55) (or equivalently (56)) to get

kh g B w? Jw?
wr o (14 )
w

First let’sassumew > w,,, w. Which is always true in astronomical applications (but may
not bein lab situaions- so beware!). Then we can expand to get

ckpi . w32 /w? B 1 wf,/w2
S T T TEs T e
1 .
- 1———5(1;“’—) (58)
2w w

where the top sign refers to the left circular wave and the bottom to the right circular wave.
The two results differ only in the small termin w?w,./w?.

Let’s rewrite our result for the angle to exhibit its dependence on the diff erence of the
two wave numbers:
B, oy (ikrz) — exp (ikp2) exp [—i% (ki + kr)]
E,  exp (ikrz) +exp (ikrz) exp [—i% (kL + k)]

dexp i (kn —kp) %] —exp =i (kn — k)]

iexp |i(kp —kr) %] +exp|[—i(kr — k1) %]
sin [(ky, — kn3)] :
= L 2] = tan {(kakR)E}

cos[ kr —kgr)

tand

Thus
6= {(/@ — kr) } + o0

Using our result (58), we find

w 1 12, We 1 [2, .
bp—kn = = —5—2(1——)+5—2(1+—)
| s () s
Tocw2\w/ T Wl
noeeBy 1 3 ngBy

eom m w?c  eggmPc w

and thus the rotation angl e determines the product nq By of the plasma density and magnetic
field strength.
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where z isthe distance between source and observer. Measurements a several frequencies
are necessary to remove the ambiguity due to the unknown factor 2nr.

For a pulsar at a distance of 1 kpc with ny = 0.05cm—3 and By = 3 uG, the expected
rotation is:

= —nobo73
egm?c f?

272 (1.6 x 10719 C)3 noByz
(8.85 x 10~ 12 F/m) (9 x 1031 kg)* (3 x 105 m/s) f?
3
F-kg? f2
Now a Farad is a C/V and a V/mis a N/C, so a F = C?/J, thus the units are
C-Js/kg? =C-kg-m*/kg?.s= C-m? /kg-s. Now put in the numbers for the physical parameters
ng, Bo and z :

07C-m2 (5x10*m=3) (3 x 1071° T) (3 x 10'* m)

0 = 3.76x1
* kg-s 12
_1692x102C-T
- f* kg-s

Now aN equals aC-T-m/s (from the force law), so the units now are
C-T N 1

kg-s kg-m B
whichis exactly what we need!
At f =1 GHzweget

1.7 x 10 .
9:T: 1.7 x 10* radians
which shows that we do indeed expect the wave to rotate around more than once under some
circumstances.

See, eg, The Astrophysicd Journal, Volume 642, I ssue 2, pp. 868-881. (2006)
7.3.3 Whistlers
Let’s look at waves onthe lower branch of the R-wave dispersion relation, i.e. at frequencies

below w.. (Thisis the dashed "bucket" in the upper |eft corner of the n? versus w plots.)
Here we have the dispersion relation

0214%: B w2 /w? _ w2 /w?
N R R

At frequencies well below the cyclotron frequency, we can approximate the denominator to
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get:
k%~ w? + w?) <i>
w

c

and if the frequency w is also well below w,,, we will have the approximate relation

w
ckp >~ wpy /=
We

or equival ently

These waves have a phase speed

and a group speed

[

_dw 202ka cw, w Voow,
Wp

g—%— w]% —2w—12)wp W—C—QC —21}(;5
In theionosphere at 5 R the plasmafrequency is about 10* Hz and the cyclotron frequency
is about 29 MHz. Thus waves in the kHz band satisfy the constraints we have imposed,
and would have thisgroup speed. The group speed decreases with frequency, thus a pulsed
signal would arrive at the observer high frequency first, and lower frequencieslater. Put
through an audio amplifier, the signal would sound like a whistle, hence the name: whistler.

During WWI radio operators used frequencies around 10 kHz and heard whistling
signals that they interpreted as enemy shells. They turned out to be lighning pulsesfrom the
southern hemisphere that had travelled along the field linesto the north.

See also Journal of Geophysical Research, vol. 86, June 1, 1981, p. 4471-4492. for
example.

Or The Astrophysical Journal, Volume 610, Issue 1, pp. 550-571 (2004)

7.4  Low frequency waves: propagation along the magnetic field.
For low-frequency waves we need to include theion motion in the current.
j: noe(ﬁi - 176)

For waves propagating along B (purely transverse waves) thereiis no density perturbation,
and no electrostatic field. We may use all the results from our previous derivation, provided
that we adjust the current accordingly. We may also use equations (37), and (38) for theion
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motion, if we make the appropriate changes to the charge and mass of the particle. Thus:

, e iE, —&E, e iE, +%E,
e | - <
w 1— :& wm 1 — :&
B noe? 1B, — "Q')‘Ey . noe’ iy +“«F,
N wM 1 _— ﬂé wm 1 — i%
w w
_ 9127 1By %ﬁEy wf, if, + %Ey
- 02 + - w?2
w 1 — :g w 1 — :g
E

. e —&E, —iE, e “F, —ik,
Jy nope 02 -
wM 1- 2% wm 1 — %&
&ﬁ . We .
_ i szEx'H’Ey 2 E, —1E,
w| P2 P w2
- w2 - 2
1| Es QIQ,QL WoWe ) Qf, w?,
= = 02 w?2 + ZEZ/ 02 + w
WiIYwA\Ll-% 1-%% l-2% 1-%%

and hence Ampere’slaw takesthe form (cf 52):

02 w2 E wiw, 020,
E, L+ pw2 — == L — = L = | = (w2 —k:202) E,
1-%  1-% w \1-2% 1-3
and (50)
02 w? E, wiw, 02%Q.
E, == | +i— | = - L= | = (W’ — K B,
1—-= 1-=% w\l-=¢ 1-=%
giving the dispersion rdation
2 2
02 w? 1 [ wiw 020
1-= 1-=% WINL-2%¢ 1-—=%
Q2 w? 1 [ WPw. Q2Q,.
pm + pw2 — P4k = 4= p — 2 —
1—= 1= w\l-—=s 1-=
w w w w
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Rearranging:

QQ Q 2
w? = K2+ PQQ <1i_‘*> + PMQ (1?2)
1— = w 1— w
02 w?
= K+ —L L (59)
1F == 14 ==
w w

We obtain a second resonance at the ion cyclotron frequency, but this timeit is the L wave
that has the resonance. Therefractive index is:

02— k2 1 QIQ) 3 wi (60)
w? ww+Q) w(wFw)
Taking the mass ratio to be 3 rather than the real value of about 2000, and w,/w. = 2, the
plot now looks like this:

18 j
164 J
14y \_

n"2 10

N A O

=1 —— L
27 whwe 3 4

o
1]
=

n? versusw/w, : solid line- L wave; dashed, R wave

Below: same plot with w,/w,. = 1/2 rather than 2:
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n? varsusw/w, : solid line- L wave; dashed, R wave

Notice that theresonance at w = 0 has disappeared, and both R and L circular waves
have the samen asw — 0.

7.5 Low frequency propagation across 50-

When the wave i s polarized with E along B, (O-wave), theions as well asthe electrons can
move freely along the fidd lines, so we expect to get only aminor change to the previous
dispersion relation. Thecurrentis

- e —e —
| = Ui =) =noe |~ — | E
7 noe (U; — Ue ) = noe <]W - )
1 1)\ =
2
= —+—|FE
noe (M + m)
Combining with Ampere’s law, we get the dispersion relation:
w? =2k —l—w?) + QIZJ
Since there is no propagation at frequencies less than w,, (now strictly | /w? + Q2 ) we

never have to worry about low frequency waves.
The other polarization (X-wave) is more interesting. The E x B driftis parallel to &,
suggesting that we will have alongitudinal component to thiswave We already saw thisfor
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the high frequency waves. So l&’sinclude the pressure teem. The equation of mationiis:
*Z'wMITi =e (E + U x BQ) — Z")//{JBTzEﬂ
No
and the continuity equation gives the by-now familiar expression for n;

n k-

St

No w
Notice that the density perturbation is moreimportant at low frequencies. Then

q _ k- @
WM, = e (E 7 x BO) ik Ty =2
w
Since these are low frequency waves, we’ll also use the plasma approximation: n; ~ n.

and consequently & - o; = k - v.. Atlow frequencies, then, the electrostatic field is shielded
and k- E = 0. Taking the dot product of the equation of mation with &, we get:

—

I C (- R VkpTik? -
Fodi = =i (v X BO) —E g
I vkpT; k> e (-» H) -
koo (1 - 22— = k B
v < 2N o " 1Y) o
or, in components, with z along % and B along z. :
) vkpT;k> __eByg B Q.
Vi WM ) T MY T T
The y—component is the same as before:
B Q.
—twMuvyy = el —evyy, By = el — = kOT = — U4y
2kp T — 1w
(1 Y )
The solution for v,, is modified:
eBO Qc\ e

Viy | 1 — —————— = i—F,
- \ (wz_:&%ﬁ)M/ wM
The parenthesis in the denominator is:

w? - kzvith
and thus

wM Y\ w? - 02— k%fth
The result for electrons is the same with the usual switchof e — —e and m — M
Then substituting into Ampere’s law, we have:

vy = i——E el )
wy T 1
2
w 2\ 5 N - L
(; —k ) B = —ipgk X j = —ipgk X noe (U; — )
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The interesting component is the z—component:
2
(% — k2> B, = —ipgnoek (Viy — Vey)

w? — k202

i,th
and finally Faraday’slaw givesus
E, = =B
So the dispersion relaionis
w? — k20? w? — k%0?
w2 — k2 = 2 i,th +w? e,th 61
Plw?—02 - k%ith Plw?—w? - k2”3¢h (61)
Check that we havethe right limitas 7" — 0.
Now werecdl tha these are low frequency waves (w < w,,). Weare going to make the
additional assumptions:

We > ko e
(the electrons travel a distance much lessthan a wavelength in one gyro-period) and also
w <K N < w,e
and
kvtll,i < Qc
With these approximations, the dispersion relation simplifies:
w? — k202 w? — k202
2 272 2 i,th 2 e,th
coer s Q(T o (=
02 W2 02 w?
w? (1 +o T ;%) = K <c2 + oaVien + =5 VCun
The ratio )
9 _ ngc? ME_ g M )
02 egMe2B% ¢y B
and similarly for (w, /w,.)? . Thus the dispersion relation is:
M+ m) no M kgT, mng m kpT,
2 (1, P M +m) = 22l FBli o M EBLe
w<+50 Bg C+EoB§M+€OB(2)m
2(14+ L = (2t =kp (T, + T,
w(+eoB§ C+soBg B (T; +Te)
Define a new speed called the Alfven speed:
2 _ Bf
Va ="~ (63)
Hop
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—ipgnoek | i——FE L i=—F <L
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e,th
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Then
W2 = J2e2 (v3

2 64
%7 @) &)
It isoften the case that v4 < ¢, in which case the relation simplifies again, to give:
wr=kK2 (1)124 —l—vi) (65)
The dispersion relaion (64) or (65) decribes magnetosonic waves.
7.6  Very Low frequency propagation along 5.
We start with our previousresult (59)
2 2
WP = B2 L 2
lyee 148
Now we approximate for w < €., (and henceaso w <« w.). Then
ww? w2
w2 _ k262 ¥ D
wo(17) (15 )
2 2 Q2 w OJ2
= BPlFw=L(lt—t=)tw=2(1F—+t=—
¢ Fw wc< wc+w§ wQC :FQC+Q(23
W Wi Wi 02 Q2w QWP
= k%2 Fw=t = e = e
c w? w? Q. 02 Q3
Now
2121271062 m_ mnge :gz
We eom eBy  €0By Qe
and thus the first order termsin w cancel. Droppmg the third order terms, we get:
2w2 Q2 2
Wwi=k22 — WpW 2w
w? 02
Now )
©p_mee? (m\"_mpm
w% N Eom GBO B €0 Bg
(compare 62). Thus
K (1 +@M) 2
€0 Bg
or
w==kvgy
where .
(66)

VY = —
V14 p/egB?
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is the Alfven speed. L &’scomparewith equation (63). From (66),

1 1 1
2
v = = =
42 pogo (1+p/e0B?) — pogo + pogE  1/¢ +1/0%
32

o (1 + B?/ppge?)
Thus the two expressions are the same when
2

P !

Thisisamost always the case  However, there are some extreme astrophysical situaions
(near pulsars, for example) where B is very large and p isvery small and thisratio
approaches 1. In these cases we have to use the more exact result (66).

Now let’s take a closer look at what is going onin this wave. The wave vector is
along By, and both the dectric and magnetic fields of the wave lieinthe z — y plane. In
the low-frequency limit, both the L and R circular waves travel at the same speed. This
means that Ilnearly polarized waves are also normal modes. With Einthe z— direction,
31 = —k x E = —Ey isinthe y—direction. The plasma particles undergo an E x B drift
whichis (to first order)

B} By
The perturbation B, causes the magnetic field to change direction, and since B, has awave
form, the field line has aripple:

BO

Y
Bl ¢

As B, oscillates, the field line ripple moves back and forth. The field line behaves like a
vibrating string. The speed of the sidewaysmotionis

which is the same as the particle drift speed. Thus the particles and the field lines move
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together. Thisphenomenon is sometimes called flux freezing as the magnetic flux isfrozen

into the plasma.
BQ
V==
Plo

The Alfven speed
may be viewed as the speed of awave on astring with tension

32
Trnag = —
o Ho
and density p. We’ll return to these ideas later when we study magnetohydrodynamics

(MHD).

The Alfven speed plays an important role in plasmas because flows that are super-
Alfvenic often behave like supersonic flows in ordinary fluids. (Notice that asT — 0 the
magnetosonic wave al so travel s at the Alfven speed. ) For example, shock waves may form.

The solar wind parameters are: speed about 400 km/s near the Earth, density n ~ 5
cm~—3, proton cydotron frequency (from ACE news release) of about 0.17 Hz.

eB A7 x 2m x 1.7 x 10727 kg kg

— =017 x 27 radls= B = = 11349 x 107 "—=

— 0.17 x 27 rad/s = S(6x 10 1 C) 349 x 10 s C
Now the units; 1 C-T-m/s=1 N=1 kg-m/s?> and so 1 T = 1 kg/sC. Thuswe have B of about
10-8 T. The Alfven speed isthen

1078 T

VA —— = 0 6759 X 104
(5% 10 x 1.7 x 1027 kg/m®) 47 x 10-7 N/A? (mm)
m3 A2s2
kgls- C
= 9.676 x 10* gk =9.7x 10" m/s

m-C
Thus the solar wind speed of about 4 x 105 m/s exceedsthe Alfven speed.

7.7 Low frequency waves at intermediate angles.

When waves propagate along the magnetic field we get el ectrostatic waves (ion-acoustic
waves) propagating at phase speed v,, and electromagnetic Alfven waves, travelling a phase
speed v, . Propagating across B we get the hybrid magnetosonic waves: (the X-modeis a
mixture of electromagnetic and el ectrostatic components). (The O-wave does not propagate
at low-frequency.) The speed of the magnetosonic waves is \/v2 + v4. . Atintermediate
angles we expect the waves to transition from one mode to another. The Alfven wave
does propagéte at all anglesto B, and the phase speed is B, /\/pfi, = v4 cost where B

is the component of B parallel to the wave vector k. When v, > v,, the magnetosonic
wave transitions to the Alfven wave asd — 0, but when v, > v 4, the magnetosonic wave
transitions to the acoustic wave. We’ll be able to investigate these low frequency waves
more easily when we study MHD (magnetohydrodynamics).
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There are still 3 waves here. The lowest branch is called the modified Alfven wave.
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