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So far we have considered a plasma as a set of nonintereacting particles, each following
its own path in the electric and magnetic fields. Now we want to consider what other views
of a plasma might be useful.

1 Plasma as a material medium

1.1 Permeability

In a magnetic medium, the individual particles of the medium (atoms, molecules etc)
contribute magnetic moments ~m and the integral over all the individual magnetic moments
gives rise to a magnetization ~M . This can be viewed as arising from a “bound current” ~jB

where
~r £ ~M = ~jB

Ampere’s law takes the form

~r £ ~B = µ0
~j = µ0

³
~jf +~jB

´
+ µ0ε0

∂ ~E

∂t
or equivalently

~r £ ~B = ~r £ µ0

³
~H + ~M

´
= µ0

³
~jf +~jB

´
+ µ0ε0

∂ ~E

∂t
or

~r £ ~H = ~jf + ε0
∂ ~E

∂t
In a LIH material, we assume that ~M = χm

~H so that

~B = ~H (1 + χm) = µ ~H

But in a plasma, the magetization is

~M =
X

i

~µi

where µ is the magetic moment of a gyrating particle,

µ =
1

2

mv2
?

B
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and thus we would have

M / 1

B
Thus both χm and µm would have a nasty dependence on B. Thus the plasma is not a linear
material (nor is it isotropic) and thus it not useful to view a plasma as a magnetic material.

1.2 Dielectric properties

In general the relation between ~D and ~E for a material is a frequency dependent relation.
The material’s response depends on the timedependence of the applied electric field. This
is true for plasmas too,

First we’ll look at the “almost static limit” (ω ¿ ωc ). The polarization is the sum of all
the electric dipoles in a medium:

~P =
X

i

~pi

and the polarization gives rise to a “bound charge density”

ρB = ¡~r ¢ ~P

Gauss’s law is
~r ¢ ~E =

ρ

ε0
=

ρf + ρB

ε0
Now let

~D = ε0

³
~E + ~P

´

so that
~r ¢ ~D = ~r ¢ ε0

³
~E + ~P

´
= ρf

Now again in an LIH material, we expect
~P = χe

~E

so that
~D = ε0 (1 + χe)

~E = ε ~E
In a plasma we have seen that a timedependent applied field (with ω ¿ ωc) gives rise to a
polarization current: ("Motion" notes equation 17)

~jp =
ρ

B2

∂ ~E

∂t

which will affect ~B through Ampere’s law:

~r £ ~B = µ0

Ã
~jf +

ρ

B2

∂ ~E

∂t

!
+ µ0ε0

∂ ~E

∂t

Thus this bound current can be combined with the displacement current to give:

~r £ ~B = µ0
~jf + µ0

Ã
ρ

B2

∂ ~E

∂t
+ ε0

∂ ~E

∂t

!

= µ0

Ã
~jf + ε

∂ ~E

∂t

!
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with dielectric constant
ε = ε0 +

ρ

B2
(1)

Since ε is independent of ~E, it appears that this could be a useful description of a plasma.
Convince yourself that charge conservation allows us to write ρB in terms of the

polarization current, and hence we also get the correct form for Gauss’ law as well.
When we study plasma waves we will be able to find additional expressions for ε valid

in different frequency regimes.

2 The fluid picture

When collisions between the plasma particles become important, we can no longer
regard them as independent particles, but instead we find it useful to look at small volumes
containing many particles and consider average properties of the particles in each small
volume– this is the fluid point of view. When dealing with a plasma, we must recognize
that particles can influence each other through the longrange electromagnetic forces in the
system, and so we must regard the term “collision” rather generally.

The fluid properties of interest are: the density ρ, pressure P, and velocity ~v. The
equations governing the motion of a fluid are:

1. Conservation of mass

The mass within an arbitrary, fixed volume of the plasma can change only by flow of
plasma into or out of that volume:

d

dt

Z

V

ρdV = ¡
Z

S

ρ~v ¢ n̂ dA = ¡
Z

V

~r ¢ (ρ~v) dV

and since this must be true for an arbitrary volume V, we have the differential equation:

∂ρ

∂t
+ ~r ¢ (ρ~v) = 0 (2)

Equation (2) is called the continuity equation.

2Momentum equation

This equation is just Newton’s second law applied to the plasma. The relevant forces
are the Lorentz force, and pressure forces. (We can add gravity when appropriate.) The
acceleration of a mass element dm = ρ dV is given by

dm
d~v

dt
= dq

³
~E + ~v £ ~B

´
¡

Z

S

P n̂ dA

where the last term is an integral over the differential volume, and represents the effect of
neighboring fluid on our element. (Recall that pressure is the normal force per unit area.)
The charge dq = nedV. Thus, applying the divergence theorem to the last term, we have

ρ
d~v

dt
dV = ne

³
~E + ~v £ ~B

´
dV ¡

Z
~rP dV
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and so we obtain the differential equation:

ρ
d~v

dt
= ne

³
~E + ~v £ ~B

´
¡ ~rP (3)

Because the charge of the particles appears in this equation, we will need one equation for
the ions and a different equation for the electrons.

3Energy equation

The equations involve the five variables ρ, P and ~v, but with one vector and one scalar
equation (for a total of 4) we are one short of a complete set. The third equation we need is
an energy equation. Often we can avoid a full energy equation by using an equation of state,
that is, a known relation between the pressure P and the density ρ. Two common choices
are:

The ideal gas law with a constant temperature T (isothermal plasma)

P = nkT (4)

or the adiabatic equation of state
P / ργ (5)

where γ = (2 + N )/N and N is the number of degrees of freedom of our system. For an
unmagnetized gas of ions and electrons, N = 3 and γ = 5/3.

2.1 Formal derivation of the fluid equations

2.1.1 More about the distribution function

An important link in the jump from considering individual particles to viewing the plasma as
a fluid is the distribution function f (~r, ~v, t). It tells us how many particles are where, going
how fast, in which direction.

number of particles with position vectors ~r to ~r+d~r and velocities in range ~v to ~v+d~v is f (~r,~v, t) d3~rd3~v

For many purposes the distribution function gives more information than we need. Thus we
obtain desired quantities as averages. For example, we may obtain the density by summing
up over all possible velocities:

n (~r, t) =

Z
f (~r,~v, t)d3~v (6)

where the integral is over the complete velocity space, and the average velocity of the
particles at position ~r is

~u (~r, t) =

R
~vf (~r,~v, t) d3~vR
f (~r, ~v, t) d3~v

=
1

n

Z
~vf (~r,~v, t) d3~v (7)

Sometimes the distribution function is normalized by dividing out the density:

f̂ (~r,~v) =
1

n
f (~r, ~v)
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so that Z
f̂ (~r,~v) d3~v = 1

We have already seen one example of a distribution function: the Maxwellian:

f (~r,~v) = n (~r)
³ m

2πkT

´3/2

exp

µ
¡mv2

2kT

¶
(8)

where here the dependence on the space and velocity variables is separable. This is an
isotropic velocity distribution, since f does not depend on the direction of the vector ~v but
only on its length. Particles in a magnetic mirror may have a losscone distribution, which
has a deficiency of particles with velocity vectors pointing along the direction of ~B. This
is an anisotropic distribution. (See Figure 7.7, pg 232). Additional examples are shown on
pages 230232 of the text.

2.1.2 The Boltzmann and Vlasov equations

The Boltzmann equation is a mathematical statement of the fact that particles cannot
disappear. The number of particles in a region of space can change only if they move
somewhere else. The number of particles in a given region of velocity space can change
only if (a) they move to a new velocity (they are accelerated) or (b) a collision knocks them
into a new region of velocity space. This physical principle is stated mathematically as

∂f

∂t
= ¡~v ¢ ~rf ¡ ~a ¢ ∂

∂~v
f +

µ
df

dt

¶

due to collisions

where

~v ¢ ~rf =
dx

dt

∂f

∂x
+

dy

dt

∂f

∂y
+

dz

dt

∂f

∂z
and similarly for ~a ¢ ∂

∂~v
f, or equivalently

df

dt
=

µ
df

dt

¶

due to collisions

where the total time derivative is
df (~r, ~v, t)

dt
=

∂f

∂t
+ ~v ¢ ~rf +~a ¢ ∂

∂~v
f

and we have written the shorthand expression

∂

∂~v
´ ~rv

as the gradient in the velocity space. Thus Boltzmann’s equation says that the distribution
function can be changed only by collisions.

Next we replace ~a with the force acting:

∂f

∂t
+ ~v ¢ ~rf +

~F

m
¢ ∂

∂~v
f =

µ
df

dt

¶

due to collisions
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In a plasma, the relevant force is the Lorentz force:

∂f

∂t
+~v ¢ ~rf +

q

m

³
~E + ~v £ B

´
¢ ∂

∂~v
f =

µ
df

dt

¶

due to collisions

(9)

and in this form, equation (9) is called the Vlasov equation. Setting the right side to zero,
we obtain the collisionless Vlasov equation. This equation is very powerful in predicting
the plasma behavior – it contains a lot of information, and we will look at some of its
conseqeunces later. But often we don’t need that much power, so we average over the
velocity distribution.

2.1.3 The zeroth moment

To obtain the nth moment, we multiply equation (9) by ~vn and integrate over the velocity
space. We start with n = 0 :
Z

∂f

∂t
dV +

Z
~v ¢ ~rf dV +

q

m

Z ³
~E + ~v £ B

´
¢ ∂

∂~v
f dV =

Z µ
df

dt

¶

due to collisions

dV

Immediately we see that the right side is zero, since every particle knocked out of a volume
element dV by a collision must be knocked into another, and both dV s are in the integrated
volume.

On the left side, the first term is:
∂

∂t

Z
f dV =

∂n

∂t

where we used equation (6). To evaluate the second term, note that ~r and ~v are independent
variables. We are integrating over ~v but differentiating with respect to ~r. Thus, using
equation (7):

Z
~v ¢ ~rf dV =

Z h
~r ¢ (~vf ) ¡ f ~r ¢ ~v

i
dV = ~r ¢

Z
~vf dV ¡ 0 = ~r ¢ (n~u)

To evaluate the third term we use the divergence theorem in the velocity space,
Z

~E ¢ ∂

∂~v
f dV = ~E ¢

Z
∂

∂~v
f dV = ~E ¢

Z

S1
n̂vf dAv

The surface integral is at infinity in the velocity space, and f ! 0 there. In fact f must go to
zero at least as fast as 1/v4 to ensure that the total plasma energy is finite. (

R
v2fv2dvdv

is finite.) Thus the third term is zero.
The fourth term is:Z

(~v £ B) ¢ ∂

∂~v
f dV =

Z ½
∂

∂~v
¢ [(~v £ B) f ] ¡ f

∂

∂~v
¢ (~v £ B)

¾
dV

=

Z
f (~v £ B) ¢ n̂ dAv

∂
∂~v ¢ (~v £ B) is identically zero, since the first component of ~v £ ~B contains only vy and vz ,
and not vx, and similarly for the other terms. The surface integral is zero because f ! 0
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sufficiently fast at infinity. Thus we have
∂n

∂t
+ ~r ¢ (n~u) = 0 (10)

and we have derived equation (2).

2.1.4 The first moment.

Now we multiply the Vlasov equation (9) by m~v before integrating:

m

Z
~v

∂f

∂t
dV +m

Z
~v

³
~v ¢ ~r

´
f dV +q

Z
~v

·³
~E + ~v £ B

´
¢ ∂

∂~v
f

¸
dV =

Z
m~v

µ
df

dt

¶

due to collisions

dV

The term on the right is the total change of momentum due to collisions, which is zero,
provided that we are integrating over all the colliding particles. We can include more than
one species of particle by writing this term as Pab = momentum transferred to species a by
species b.

Now for the left side. The first term is:

m
∂

∂t

Z
~vf dV = m

∂

∂t
(n~u)

The second term is hardest, so let’s leave it aside for the moment. The third term is, in index
notation:Z ½

∂

∂vj

½
vi

·
Ej +

³
~v £ ~B

´
j

¸
f

¾
¡ f

∂

∂vj

µ
vi

·
Ej +

³
~v £ ~B

´
j

¸¶¾
dV

We convert the first term to a surface integral, as before, and it vanishes, leaving

¡
Z ½

f
∂vi

∂vj

·
Ej +

³
~v £ ~B

´
j

¸
+ fvi

∂

∂vj

·
Ej +

³
~v £ ~B

´
j

¸¾
dV

= ¡
Z ½

fδ ij

·
Ej +

³
~v £ ~B

´
j

¸
+ 0

¾
dV

where Ej is independent of vj and
³
~v £ ~B

´
j

contains the two components of ~v other than

vj . Finally we have

¡
Z

f
h
Ei +

³
~v £ ~B

´
i

i
dV = ¡n

h
Ei +

³
~u £ ~B

´
i

i

Now we tackle the second term, again using index notation:
Z

vivj
∂f

∂xj
dV =

∂

∂xj

Z
vivjf dV

where the integral is over the velocity space. Now we write each vi in terms of the average
fluid velocity ~u (which is a function of ~r but not of ~v) and the difference ~w between ~v and ~u :

vi = ui + wi

so that
vivj = uiuj + uiwj + ujwi + wiwj
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and
∂

∂xj

Z
vivjf dV =

∂

∂xj

Z
(uiuj + uiwj + ujwi + wiwj ) f dV

=
∂

∂xj
(uiujn) +

∂

∂xj

·
ui

Z
wjf dV + uj

Z
wif dV

¸
+

∂

∂xj

Z
wiwjf dV

The second term is zero by definition of ~w.
¡R

fwjdV =
R

f (vj ¡ uj) dV = nuj ¡ nuj = 0
¢

We express the last term using the stress tensor

Pij ´ m

Z
wiwjf dV

so that

m

Z
vivj

∂f

∂xj
dV = m

∂

∂xj
(uiujn) +

∂

∂xj
Pij

= mui
∂

∂xj
(ujn) + mnuj

∂

∂xj
ui +

∂

∂xj
Pij

Thus the first moment equation is:

m
∂

∂t
(n~u) + m~u

³
~r ¢ n~u

´
+ mn

³
~u ¢ ~r

´
~u + m~r eP ¡ qn

³
~E + ~u £ ~B

´
= Pab

We can simplify this using our first relation (10):

m

µ
~u

∂n

∂t
+ n

∂~u

∂t

¶
+ m~u

µ
¡∂n

∂t

¶
+ mn

³
~u ¢ ~r

´
~u + ~r eP ¡ qn

³
~E + ~u £ ~B

´
= Pab

mn

·
∂~u

∂t
+

³
~u ¢ ~r

´
~u

¸
+ ~r eP ¡ qn

³
~E + ~u £ ~B

´
= Pab

or

mn
d~u

dt
= qn

³
~E + ~u £ ~B

´
¡ ~r eP + Pab (11)

where the total time derivative
d~u

dt
=

∂~u

∂t
+

³
~u ¢ ~r

´
~u, (12)

the second term being the convective derivative.
When the velocity distribution is isotropic, Pij is diagonal:

Z
fwiwj d3~v = Pδij

and the temperature is defined by

3nkT = m

Z
wiwif d3~v = mn < w2 >

Then the rms velocity about the mean is
p

< w2 > =
3kT

m
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a familiar result. Then we write

Pij =

0
@

P 0 0
0 P 0
0 0 P

1
A

where P = nkT. This reduces our equation to the form:

mn
d~u

dt
= qn

³
~E + ~u £ ~B

´
¡ ~rP + Pab (13)

and we have derived equation (3).
The second moment gives the energy equation. We won’t need it, so we won’t derive

it here. (See http://www.physics.sfsu.edu/~lea/courses/grad/fluids.PDF page 2 if you are
interested.)

3 Fluids, plasmas and distribution functions

We’ll be using equations (10) and (11) extensively, so let’s review how we got them.
We needed to assume some properties of the distribution function, specifically that

f (~v) ! 0 as v ! 1 at least as fast as v4. This is necessary to ensure that the total energy
is finite. The Maxwellian distribution satisfies this, since it goes to zero exponentially, i.e.
faster than any power.

The Maxwellian distribution is the solution to the equation:
µ

df

dt

¶

due to collisions

= 0

i.e. a Boltzmann equation where the right side dominates. That means that collisions are
very important.

How important are collisions in plasmas? The mean free path (“mfp") between
collisions, computed using the Coulomb force (see e.g. Spitzer’s lovely book “Physics of
fully ionized gases”) can often be very large, larger than the length scale of the plasma
system. This is especially true in Astrophysics. Yet we see phenomena that are intrinsically
fluid phenomena, like shock waves. Satellites in far Earth orbit have obtained very clear
evidence of a shock wave where the solar wind meets the Earth’s magnetic field, for
example. In a plasma the mfp is restricted because the charged particles are forced to gyrate
around ~B, and this usually makes them good fluids. Additional collisionaltype interactions
occur when the plasma particles interact with plasma waves. Thus we have good reason to
believe that we can successfully apply the fluid equations to most plasmas.

4 Using the equations to compute plasma drifts

We will begin by using the plasma fluid equations to compute drifts under the
assumptions:

1. The drifts are slow. We’ll make this assumption quantitative in a minute, and
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2. The drifts are constant in time.

These assumptions are consistent with the kind of behavior we’ve come to expect from
the individual particle motions.

First let’s look at what we mean by “slow”. The momentum equation, (3) is

ρ
d~u

dt
= ρ

µ
∂~u

∂t
+

³
~u ¢ ~r

´
~u

¶
= nq

³
~E + ~u £ ~B

´
¡ ~rP

and if the drift is timeindependent, the partial derivative with respect to time vanishes,
leaving

ρ
³
~u ¢ ~r

´
~u = nq

³
~E + ~u £ ~B

´
¡ ~rP

³
~u ¢ ~r

´
~u =

q

m

³
~E + ~u £ ~B

´
¡

~rP

ρ

With L being a length scale for our system, the order of the terms is

LHS
v2

L

RHS, first term, second term ωc

µ
E

B
,v

¶

and

RHS, third term
c2s
L

where cs is the sound speed in the fluid (see below). Thus the LHS is much less than the
third term on the right provided the drift is highly subsonic, v ¿ cs. The LHS is much less
than the second term on the right provided that the drift speed is much less than the particle’s
orbital speed times L/rL. This suggests that we can safely neglect the quadratic term in v
on the left side. Then in a steady state we have

0 =
q

m

³
~E + ~u £ ~B

´
¡

~rP

ρ

where only components of ~u perpendicular to ~B contribute. Now dot with ~B to get

0 =
q

m
~E ¢ ~B ¡ ~B ¢

~rP

ρ
(14)

and cross with ~B to get

0 =
q

m

³
~E £ ~B +

³
~u £ ~B

´
£ ~B

´
¡

~rP

ρ
£ ~B

0 =
q

m

³
~E £ ~B ¡ ~uB2

´
¡

~rP

ρ
£ ~B

where we took ~u ¢ ~B = 0 since only perpendicular components of ~u appear in this relation.
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Next solve for ~u :

~u =
~E £ ~B

B2
¡ m

q

~rP

ρ
£

~B

B2

The first term is our old friend the ~E £ ~B drift. The second term is new. It is called the
diamagnetic drift.

~vdiamagnetic = ¡
~rP

nq
£

~B

B2
(15)

or, for an isothermal plasma:

~vdiamagnetic = ¡kT

q

~rn

n
£

~B

B2

Since the charge appears explicitly, ions and electrons go in opposite directions, and so there
is a diamagnetic current:

~jD = ne (~vi ¡ ~ve) = ¡k (Ti + Te) ~rn £
~B

B2

= k (Ti + Te)
~B

B2
£ ~rn (16)

In the fluid picture we have lost a lot of detail. We did not get any of the “finite Larmor
radius effects”, but we also get something new. The diamagnetic drift is a purely fluid
phenomena that arises because in a given region, more particles move in one direction than
the opposite direction if there are gradients in the density, as shown in the picture below.
The drift is independent of the particle’s mass, because the particle’s thermal speed does
depend on m (v / m¡1/2) but the Larmor radius is proportional to m+1/2, so the slower
particle samples more of the density gradient. The two effects exactly cancel.
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Now let’s go back and see what we can learn from the parallel component of the
momentum equation (14). Again let’s specialize to an isothermal plasma. Then:

0 =
q

m
~E ¢ ~B ¡ ~B ¢

~rP

ρ
= ~B ¢

Ã
¡ q

m
~rφ ¡ kT

m

~rn

n

!

= ¡
~B

m
¢ ~r (qφ+kT ln n)

and thus, for electrons with q = ¡e,

eφ¡kT lnn = constant along a field line

or, taking the exponential of both sides:

n = n0 exp

µ
eφ

kT

¶
(17)

which is the Boltzmann relation.
Remember that we obtained equation (14) by neglecting the acceleration in the

momentum equation. Because of the mass dependence on the right, the acceleration of the
electrons is much larger than the acceleration of the ions. The electrons move rapidly until
equation (17) is satisfied. The ions do not have time to move.

5 The plasma approximation

The plasma is quasineutral: that means that the electron and ion densities are almost
equal everywhere in the plasma (assuming the ions are protons, or, at least, singly ionized).
When an electric field exists in the plasma, the electrons move rapidly to neutralize the
field. The ions follow, more slowly. Generally, for low frequency motions, we do not use
Poisson’s equation to get ~E. Rather, we use the equation of motion to get ~E, and then use
Poisson’s equation to compute the small difference between ni and ne. Our derivation of
the Boltzmann relation (17) is an example of this procedure.

The assumption that ne ¼ ni (and jne ¡ ni j ¿ ne) with ~E 6= 0 is called the plasma
approximation. It is valid for frequencies that are low in a sense that we shall describe more
precisely later.
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