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So far we have considered aplasmaasa set of non-intereacting particles, each following
its own path in the electric and magnetic fields. Now we want to consider wha other views
of aplasmamight be useful.

1 Plasma as a material medium

1.1  Permeability

In a magnetic medium, the individud particles of the medium (atoms, molecules etc)
contribute magnetic moments i and the integral over all the individual magnetic moments
gives rise to a magnetization M. Thiscan be viewed as arising from a “bound current” 5
where
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Ampere’s law takesthe form
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But in aplasma, the magetization is

M = Z i
where 1 is the magetic moment of agyrating particle,
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and thus we would have )
M —
*B

Thusboth x,,, and ,,, would have anasty dependence on B. Thus the plasmaisnot alinear

material (nor isit isotropic) and thusit not useful to view a plasma as a magnetic material.

1.2 Dielectric properties

In general therdation between D and E for amaterial is a frequency dependent relaion.
The material’s response depends on the time-dependence of the goplied electric field. This
is true for plasmas too,
First we’ll look at the “dmost static limit” (w < w.). The polarization isthe sum of all
the electric dipolesin a medium:
P=>Y 7

and the polarization givesrise to a“bound charge density”
PB = -V.P
Gauss’slaw is

Now let
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In a plasma we have seen that a time-dependent applied field (withw < w,) givesriseto a
polarization current: ("Mation" notes equation 17)

whichwill affect B through Ampere’slaw:
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Thus this bound current can be combined with the displacement current to give:
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with diel ectric constant
e=co+ == @)
0 B2
Since ¢ isindependent of E, it appearsthat this could be a useful description of a plasma.
Convince yourself that charge conservation allows us to write pp in terms of the
polari zation current, and hence we al so get the correct form for Gauss’ law aswell.
When we study plasmawaves we will be able to find additional expressions for ¢ valid

in different frequency regimes.

2 The fluid picture

When collisions between the plasma particles become important, we can no longer
regard them as independent particles, but instead we find it useful to ook at small volumes
contaning many particles and consider average properties of the particles in each small
volume- thisis the fluid point of view. When dealing with a plasma, we must recognize
that particles can influence each other through the long-range electromagnetic forcesin the
system, and so we must regard the term “collision” rather generally.

The fluid properties of interest are: the density p, pressure P, and velocity v. The
equations governing the mation of afluid are;

1. Conservation of mass

The mass within an arhitrary, fixed volume of the plasma can change only by flow of
plasma into or out of that volume;

i/ pdV:—/pz?-ﬁdA:—/ V- (pv) dV
dt v S JV
and sincethismust be true for an arbitrary volume V, we have the differential equation:

dp = L
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Equation (2) is called the continuity equation.
2Momentum equation

This equation is just Newton’s second law applied to the plasma. The relevant forces
are the Lorentz force, and pressure forces. (We can add gravity when appropriate) The
accel eration of amass element dm = p dV is given by

dmZ—:qu(ﬁ+ﬁx§)—[qPﬁdA
where the last term isan integral over the differential volume, and represents the effect of
neighboring fluid on our element. (Recall that pressureis the normal force per unit area.)
The charge dg = nedV. Thus, applying the divergence theoremto the last term, we have
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and so we obtain the differential equation:

dv - = -
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Because the charge of the particles appears in this equation, we will need one equation for

theions and a different equation for the dectrons.
3Energy equation

The equationsinvolve the five variables p, P and v, but with one vector and one scalar
equation (for atotal of 4) we are one short of acomplete set. Thethird equation we need is
an energy equation. Often we can avoid afull energy eguation by using an equation of state,
that is, a known relation between the pressure P and the density p. Two common choices
are:

The ideal gas law with a constant temperature 7" (isothermal plasma)

P = nkT 4)
or the adiabatic equation of state
P p? ©)
wherey = (2+ N) /N and N isthe number of degrees of freedom of our system. For an
unmagnetized gas of ionsand electrons, N = 3 and v = 5/3.

2.1 Formal derivation of the fluid equations

2.1.1 More about the distribution function

An important link in the jump from considering individual particlesto viewing the plasmaas
afluid is the distribution function f (7, 7, ¢). It tells ushow many particles are where, going
how fast, in which direction.

number of particleswith position vectors 7 to 7+d7 and velocitiesin range @ to +d7 is f (7, 9, t) d*Fd° %

For many purposes the distribution function gives more information than we need. Thuswe
obtain desired quantities as averages. For example, we may obtain the density by summing
up over all possible velocities:

n (7 t) = /f (7,0,t)d*% (6)

where the integral is over the complete velocity space, and the average vel ocity of the
particlesat position 7 is
. [ of (7, 6,t) d3% 1/q .l 3
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Sometimes the distribution function is normalized by dividing out the density:
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so that
/f(F,U) Bv=1

We have already seen one example of adistribution function: the Maxwellian:
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where here the dependence on the space and velocity variables is separable. Thisisan
isotropic velocity distribution, since f does not depend on the direction of the vector ¢ but
only on its length. Particlesin a magnetic mirror may have a loss-cone distribution, which
has a defidiency of particles with velocity vectors pointing along the direction of B. This
is an anisotropic distribution. (See Figure 7.7, pg 232). Additional examplesare shown on
pages 230-232 of the text.

2.1.2 The Boltzmann and Vlasov equations

The Boltzmann equation is a mathematical statement of the fact that particles cannot
disappear. The number of particlesin aregion of space can change only if they move
somewhere dse. The number of particlesin a given region of velocity space can change
only if () they move to anew vdocity (they are accelerated) or (4) a collision knocks them
into anew region of velocity space. This physicd principleis stated mathematically as
of > daf
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where the total time derivaiveis
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and we have written the shorthand expression
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asthe gradient in the velocity space. Thus Boltzmann’s equation says that the distribution
function can be changed only by collisions.
Next we replace @ with the force acting:
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In aplasma, the rdevant force isthe Lorentz force:

%+E-Vf+%(E+UxB>-%f:<Z—J;> )
due to collisons

and in this form, equation (9) is called the Vlasov equation. Setting the right side to zero,

we obtain the collisionless V lasov equation. This equation is very powerful in predicting

the plasma behavior — it contains a lot of information, and we will look at some of its

consegeunces later. But often we don’t need that much power, so we average over the

vel ocity distribution.

2.1.3 The zeroth moment

To obtain the nth moment, we multiply equation (9) by ¢¥" and integrate over the velodty
space. We start withn =0 :
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Immediately we see that the right sideis zero, since every particle knocked out of avolume
element dV by acollision must be knocked into another, and both dV's are in the integrated
volume.

On the left side, thefirst termis:
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where we used equation (6). To evduate the second term, note that 7 and ¢’ are independent
variables. We are integrating over v but differentiating with respect to . Thus, using
equation (7):

/5-€fdvz/[6-(af)—fﬁ-ﬁ] dvzﬁ-/ﬁfdv—o:ﬁ(na)
To evduate the third term we use the divergence theoremin the vel ocity space,
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ov v -

The surfaceintegral isat infinity in the velocity space, and f — 0 there. Infact f must goto
zero at least as fast as 1/v* to ensure that the totd plasma energy isfinite. (| v fo*dvdSQ,
is finite.) Thusthethird term is zero.

The fourth term is.
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;9‘75 - (7 x B) isidentically zero, since the first component of ¥ x B contains only v, and v,
and not v,,, and similarly for the cther terms. The surfaceintegral is zero because f — 0



sufficiently fast at infinity. Thus we have

on .
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and we have derived equation (2).

2.1.4 The first moment.

Now we multiply the Vlasov equation (9) by m ¢ before integrating:
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The term on the right is the total change of momentum due to collisions, which is zero,
provided tha we are integrating over all the calliding particles. We can include more than
one species of particle by writing this term as P,;, = momentum transferred to species a by
speciesb.

Now for theleft side. The first termis:
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The second term is hardest, so let’sleave it aside for the moment. Thethird termis, in index
notation:
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We convert the first term to a surface integral, as before, and it vanishes, leaving
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where E; is independent of v; and (17 X E) _contains the two components of ¥ other than
J

vj. Finaly we have
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Now we tackl e the second term, agan using index notation:
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where theintegral is over the vdocity space. Now we write each v; in termsof the average
fluid velocity @ (which is afunction of 7 but not of ) and the difference @ between v’ and @ :

Vi = Ui + W;

so that

ViV = Ui + U;Wj + UjW; + W W;



and
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The second termis zero by definition of . ([ fw;dV = [ f (v; —u;) dV = nu; — nu; = 0)
We expressthe last term using the stress tensor
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Thusthe first moment equation is:
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We can simplify thisusing our first relation (10):
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the second term being the convective derivative.
When the velocity distribution is isotropic, P;; isdiagonal:

/fw,—wj d*v = P;;
and the temperature is defined by
3nkT = m/wiwif B> =mn < w? >
Then the rmsvdocity about the mean is
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afamiliar result. Then wewrite
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where P = nkT'. Thisreduces our equation to theform:
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and we have derived equation (3).

The second moment gives the energy equation. Wewon’t need it, so wewon’t derive
it here. (See http://www.physics.sfsu.eduw/~l ea/courses/grad/fiuids.PDF page 2 if you are
interested.)

3 Fluids, plasmas and distribution functions

We’ll be using equations (10) and (11) extensively, so let’s review how we got them.
We neaded to assume some properties of the distribution function, specificdly that
f(¥) — 0asv — oo atleast asfast asv?. Thisis necessary to ensure that the total energy
isfinite The Maxwellian distribution satisfies this, since it goesto zero exponentially, i.e.

faster than any power.
The Maxwdllian distribution is the solution to the equation:

(d_f) —0
dt due to collisons

i.e. a Baltzmann equation where the right side dominates. That meansthat callisions are
very importarnt.

How important are collisionsin plasmas? The mean free path (“mfp") between
collisions, computed using the Coulomb force (see e.g. Spitzer’slovely book “Physics of
fully ionized gases) can often be very large, larger than the length scale of the plasma
system. Thisisespecially truein Astrophysics. Yet we see phenomenathat areintrinsicadly
fluid phenomena, like shock waves. Satellites in far Earth orbit have obtained very clear
evidence of a shock wave where the solar wind meets the Earth’s magnetic field, for
example. Inaplasma the mfp isrestricted because the charged particles are forced to gyrate
around B, and this usually makes them good fluids. Additional collisional-type interactions
occur when the plasma particles interact with plasmawaves. Thus we have good reason to
believe that we can successfully apply the fluid equationsto most plasmas.

4 Using the equations to compute plasma drifts
We will begin by using the plasma fluid equations to compute drifts under the

assumptions:
1. The drifts areslow. We’ll make thisassumption quantitativeina minute, and



2. The drifts are constant in time.

These assumptions are consistent with the kind of behavior we’'ve come to expect from
the individual particle mations.
First let’s look at what we mean by “sow”. The momentum equdion, (3) is
du ou Loe) L L, 4 -
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and if the drift is time-independent, the partial derivative with respect to time vanishes,
leaving
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With L being alength scale for our system, the order of thetermsis
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where ¢ is the sound speed in the fluid (see below). Thus the LHS is much less than the
third term on the right provided the drift is highly subsonic, v < ¢;. The LHSis much less
than the second term on the right provided that the drift speed is muchlessthanthe particle’s
orbital speed times L/r;. This suggeststhat we can saely neglect the quadratic term in v
ontheleft side. Then in a steady state we have

. N VP
=L (E+axB) B
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where only components of « perpendicular to B contribute. Now dot with B to get
— — — A‘P
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and cross with B to get
L. N = VP -
0 = L(BxB+ (ixB) xB)fv—xB
m p
. VP -
0 = i(ExB—aBQ)—V—xB
m p

where we took @ - B = 0 since only perpendicular components of & appear in thisrelation.
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Next solvefor 4 : . .
ExB mVP B

B? q p B
The first term is our old friend the E x B drift. The second termisnew. It iscalled the
diamagnetic drift.

U

, VP B
VUdiamagnetic = _n_q X E (15)
or, for an isothermal plasma:
o kT vn " B
Udiamagnetic = q n B2

Sincethe charge appears explidtly, ions and electrons go in opposite directions, and so there
is adiamagnetic current.
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= k(Ti—ﬁ—TE)E x Vn (16)

In the fluid picture we have lost a lot of detail. We did not get any of the “finite Larmor
radius effects”, but we also get something new. The diamagnetic drift is a purdy fluid
phenomenathat arises because in agiven region, more particles movein one direction than
the opposite direction if there are gradients in the density, as shown in the picture below.
The drift isindependent of the particle’s mass, because the particle’s thermal speed does
depend on m (v < m~1/2) but the Larmor radius is proportional to m*1/2, so the slower
particle samples more of the density gradient. The two effects exactly cancel.

higher n ]

lowern

net drift

11



Now let’s go back and see wha we can learn from the parallel component of the
momentum equation (14). Again let’s specialize to an isothermal plasma. Then:

L . . VP . . kT'V
0 = iE.BB.V_B(iw_ﬂ)
m p m m n
B
= —— -V (q¢+kTInn)
m

and thus, for electronswith ¢ = —e,
e¢p—kT Inn = constant along afield line
or, teking the exponential of both sides:

e

n = ngexp <E> (17)

whichis the Boltzmann relation.

Remember that we obtained equation (14) by neglecting the acceleration in the
momentum equation. Because of the mass dependence on the right, the acceleration of the
electrons ismuch larger than the accel eration of the ions. The electrons move rgpidly until
equation (17) issatisfied. The ionsdo not have time to move.

5 The plasma approximation

The plasmais quasi-neutral: that meansthat the electron and ion densities ae d most
equal everywhere in the plasma (assuming the ions are protons, or, & least, singly ionized).
When an electric field exists in the plasma, the electrons move rgpidly to neutralize the
field. Theions follow, more slowly. Generally, for low frequency motions, we do not use
Poisson’sequation to get £. Rather, we use the equation of mation to get £/, and then use
Poisson’s equation to compute the small difference between n; and n.. Our derivation of
the Boltzmann relation (17) isan example of thisprocedure.

The assumption that n. ~ n; (and |n. —n;| < n.) with E # 0 iscdled the plasma
approximation. tisvalid for frequendes that arelow in a sense tha we shall describe more
precisely |ater.
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