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Now it is timeto take a brief look at some phenomenathat arise when instabilities|ead
to large amplitude fields and density perturbations.

1 The ponderomotive force

The ponderomative forceis akin to radiation pressure It isaforce on the plasmathat
arisesfrom the presence of alarge-amplitude wave. T he electron equation of motion is
dv (7,t)
"
where the position of theelectron is+ (¢) . There are non-linear effects due to
1 thev x B term

= —e|E(7,t)+0(7t) x B(Ft) @

2. thefad that we must use £ (7,t) , the field at the perturbed position of the dectron, not
E(7).
Now let usassume that the el ectric field is due to a plasmawave and has the form
E (7,t) = E, (F) cos wt

where the function E () contains all the information about the spatial dependence of the
electric field, and the field is osdllating in time as expected for awave. We cannot use the

exponential form ¢ (F#=9t) here because of the non-linearity. (At least, we cannot do it
easily, because of all the products that occur. Extreme careis needed with taking the real
part.) Weusea"bootstrap" method to build the solution, as follows.

1st order

The first order response is the response due to the electric field at the unperturbed
position:

mM = —eE (7)) = —eE, (%) coswt

(Note that the time average of thisforceis zero.) We can integrate this equation with respect
to time to get the vd ocity

¢
U (7 t) — vy (F,0) = —%Es (7_"0)/ coswtdt = —%ES (7o) sin wt 2
0



and integrate agai n to get the first order displacement. Take v, (7,0) = 0. Then

t
71 (1) = ~= I, (%) / Sinwidf —
0

s (To) (coswt — 1) (3)

Now we can use the dieplacement to cal culate the dectric field at the perturbed position
E'S(F):E_’S(FO)+((SF1~6)E’SA+... (4)
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Next we use Faraday’s Law to find the corresponding 5.
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Assumethat B hasthe sameformas E
B (7,t) = B, (F) sinwt
(The reason for the sine rather than the cosine is made obvious in the line below.) Then,
substituting into Faraday’s law, we have
V x B, () cos wt = —wB, (F) cos wt
and so thefirst order termis:

. 1- =
By (7t) = f;V X Eg (7o) sin wt (5)

We now have the complete set of first order quantitiesthat we need, and we can use these to
find the next order.

2nd order

We look for correctionsto the first order terms. The second order termsin the equation
of motion (1) are:
md’Ug (7, t)

dt = —€ 1+U1XBl>
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[E (7o) (coswt — 1) - V} E, (7)) coswt — —E (7o) x (V x E, (F0)> sin? wt
mw? mw?

Now we time average. The term in coswt averages away, and the termsin sin? and cos>
averageto 1/2. Thus

d’l?g (T_") N 62 — . - - . — . — _ N
<> = [(E (7o) - v) E, (7o) + E, (Fo) x (v x E, (ro))}
Expand the second term:
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Since the time average of the first-order force iszero, the time averaged non-linear force on

theelectronis
62

F=-—=VE: (6)
ey
The force on aunit volume of the plasma is then the force exerted on all the dectrons in the
plasma:
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is the el ectric energy density and < > denotesthe2ti me average

We may now apply this result to some of the waveswe have studied.

Electrostatic waves

The electric field accelerates the el ectron, which movesfarther in the half cyclein which
the field isdecreasing than it doesin the half cycle with increasing field. Thereisa net drift.
Since Eisalong &, so isthe force and the drift.

Electromagnetic waves . .

The wave magnetic field pushes electrons in the direction of k (v isparalel to E and
E x Bisparallel to k). So thereisadrift along k.

The ponderomotive force acts primarily on electrons (notice the massin the denominator
of equation (6). Theresulting charge separation generates additional electric fields that
transmit the forceto theions. Thisfield also actson the electrons, of course. The net result
is to slow the electrons and speed the ions. (We saw a similar effect in ambipolar diffusion.)
The net forceisgiven by equation (7).

2 Parametric instabilities

These instabilities are d so known aswave-wave interactions. The ponderomtive force
playsan important role in these instabilities.

From a QM point of view, we can regard the plasma waves as particles- plasmons- with
energy #iw and momentum k. When one wave (called the pump wave) interacts with a
plasma, it can generate two “daughter” waves, provided that energy and momentum are
conserved. That is, we need

Wop = W1 + wo



and — — —

ko = k1 + ko
We can see how thisworks for Langmuir waves and EM waves by looking at the w versus &
plot. Remember

wd = w?) + k2
for EM waves (blue curve) and
wio = wp + k{20

for Langmuir waves (black curve). The plot shows an EM wa/e(EO, red arrow) with two
Langmuir wave daughters (green arrows).

Mechanism of the instability: .

Suppose we have a pump wave with electric field amplitude £, and a perturbation with
wave number k; formsin the plasma, givingrise to E;,. Then therewill be aforce on the
plasma

N w2 - £ N S5\ 2
Fyy = —=£V= (B + Ey)
If the pump wave has wavelength long compared with the perturbation (kg < k1), and
E, < Ejinitially, then
- w? oo
Fy, ~ -——2v=2 (QEO -El)
w 4
w2 > [ = — — —
= —=tc,V {EOG - Eq, cos (ko -X— wot) cos (k1 -T — wlt)}
2w?

= —%506 [E_:OG -Ela {cos [(EO + El) -2 — (wo +w1) t} + cos [(/20 - El) cx— (wp —w1) t} H
Thus thisforce drives disturbances at the two frequencies

w= wytwi



and also L
k=kot ky
This is the frequency matching condition described above We dso need

Eoo - Eig #0
Soif the pump wave is an EM wave and the daughters are Langmuir waves, the Langmuir
waves cannot propagate in the same direction as the pump.

If thereisno damping, a pump wave of any amplitude can drive a parametric instability.
But usually there is some form of damping, and then there is athreshold amplitude bd ow
which theinstability does not go. If I'; and I'y arethe damping ratesfor the two daughters,
then we find

E% > Cwiwa 'y
where C isa constant. (See Chen sec 8.5.3 for the details.)

3 Shock waves and solitons

These are intrinsically non-linear phenomena. When awave grows to large amplitude,
different parts of the wavetrave with different speeds. This|eads to stegpening of the
wave form. In a soliton, the wave has a profile that moves without change of shape asthe
non-linear effects of steepening and dispersion bal ance each other. To see how this can
work, look at an ion sound wave with dispersion relation (waves notes page 10)
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Since )
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the phase speed v, = w/k increases with n. Thus awave profile that isinitially sinusoidal
will steepen.



wave goes fasier here

wive steepens

Clearly the effect isnegligible unless kX p isnot much less than one. Thus shock waves and
solitons have structure on the order of Ap.

Now for the detals. The ion-sound wave is a longitudinal wave, so everything is
one-dimensional. We choose z as a coordinate measured along the direction of wave
propagation. From energy conservation, if theion speed is u at apoint where the potential
is zero, then

1 1
EMuS = EMUQJr ep

and thus
u=/uf — 2;—?
From the continuity equation for theions,
0 -
a—’; +V - (nd) =0

in a steady state (0/0t = 0), nu is constant:
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The electron density is given by the Boltzmann relation

Ne = N €xp | ==
kT,

Then Poisson’s equation gives

&Pp e eng <¢>> < e )/
— == (n. —n;) = — — ) —(1-2 8
5T =T, [exp kT, Mu ®)
To simplify this, let’s introduce the dimensionlessvariables
ep e
=TT 7oz? ©



and, since we expect structure on ascale Ap,

_ xS =z [ne 10
¢ AD mvs v \| eoM (10)
Finally, we introduce the Mach number
M
M= _ M (11)
Vg VEkT,
Then equation (8) becomes:
Mo2 &>y 2 7.\
Mo 2xp _ o eXpX_<1_2&;>
e dg* vj €0 Mug
d?x X\ V2
— = X (12— 12
e (1-2%a) 2
Now if we define the pseudo-potential function
V(X)—16X+M2<1 172%
which has the property that
V(0) =
then
av 1 2 x \ /2 X\~ 1/2
_— X 2 _;m | — — J) WA Y — _eX e D
= e M ( 2( M2)(1 2/\/12) > e +(1 2/\42)
and thus Possion’s equation (12) takesthe form:
d? d
dx_ ) (13)
d¢ dx

We can solvethis by analogy to the problem of apartide moving in apotential well. The
potential x islike acoordinate x and the spatial coordinate ¢ isliket. Lety = dy/d¢.
(Thisisthe electric fidd and actslike the v ocity in our comparison problem.) The diagram
below shows what the potential well looks like for three val ues of the Mach number. The
vertical axisis V' and the horizontal axis is .
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Looking at the bottom plot for a moment, a particle entering at x = 0 will find its
velocity increasing for awhile, and then decreasing again as it reaches the wall at the far
side of thewell. Its"velocity" will become zero, so it will reflect and return to the origin,
repeating its motion (but in reverse). The other plot shows that if the Mach number is too
large or too smadl, the "potential” does not have awell, and we do not get this behavior.
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"velocity" versus £

In our case this“velocity” isdx/d¢, sowe may “integrate” toget theresulting x. dy /d¢
is zero (zero slope) at £ = 0, then positive, then zero, then negative as the partide returns to
the origin.. We get a graph like this:

§

If the particle loses speed for somereason, it can get trapped in the well. Thisleadsto an
osdllating velocity, and thus an oscillating x .
Multiplying both sides of equation (13) by y, we get:

S v dx

d Ay de
A4 (L) _ _dv
d£<2y> BT

whichwe can integrate immediately to get

y:%:i\/—ZVZi\/—Q[1—6X+M2<1— 1—2% ] (14)

This is not easily integrable, so now we approximate.
Let x be small (but not very small), so we expand the functions in equation (12) to



second order:

2y X2 x_ (-39 <2x )2
= - 1+><+2+~--—<1+M2 > =)+
3

1 X2
= X I—W +7 1—m + - (15)
Now with 20-20 hindsight, we let
¢ -

X = Xm {cosh <Z>} (16)
Then (1+1)

—l £ §\]

’ S § >
X =T Xm sinh X [cosh (A)}

and

¢ Fefglen (G- Gk s (] )
= b oot (f)}_l{l—ﬂm (1- cosh2§/A)}

-1 141 12 1(1+1 ( )
= —y|(-l4——)=— - 17
~ ( + cosh2§/A> AR TR v (17)

Now we compare thisresult (17) with equation (15) and ask what it will take to make them
the same.

1. To get the coefficient of y right we must have
2 1

~ R (18)
Since theleft hand sideisasquare, and thus positive, it is necessary that M > 1.
2. To make the second term be a square of y we need
=2 (19)
3. To get theright coefficient of y? we need
1 1
_la+ ):_ 1_i (20)
A2)(’IYL 2 M4
Soving for x,,, using (18) and (19), we get
—20(1+1) (1 1 ) 3
X’m = K = - 2 o 3.
A (1 - 57) M) (1 - =)
M? —1) M?
S ClU e L (21
(M*=3)

For ., to be positive, we must havel < M < 3Y/4 =1.3. (A moreexact treatment
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without the approximations we have made gives M s = 1.6).
Finally, from (18) and (19) we obtain

2 2M
A= ——m= = ——— 2
V1I-1/M? VM2 -1 (22)
Thus the solution we have found is (16, 21, 22 and 19)
M? —1) M?
3 M2 1) (23)

(3 — M*) cosh? [ﬁM}
The amplitudeis < 1, justifying our approximations, if

3IM*—3M? < 3-M*
AIM* —3M% -3 < 0

<M2—3+8\/§) (M“’—?’ﬁ) < 0

which means
3 — /57 5  3+457
8 8
—.56873 < M?<1.3187
and thus

M < Vv1.3187 =1.1483

With M = 1.125, the solution looks like:

(1.3187 — 1) 1. 3187

(3 — (1. 3187)2) cosh? [m\h. 3187 — 1}

.99982
cosh? . 2458¢
Or, Inthe origind variables,

x = 3

e .99982
kT.  cosh®.2458z/\p
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Thisis asoliton profile. Thewidthisof order 10\p. The pulse gets narrower as M
increases.

Remembering that the “velocity” in our analogy is essentially the electric field, we can
determineit from Poisson’s equation (8 or 12). Integrating once,

dx _ X /f
_——— Ne —Nyi)d
Thus the “velodity” decreases if the density difference decreases. This may occur due to
reflection of ions from the front of the shock, leading to an increased ion density upstream.

If the ions are not completely cold, some of them will not have enough kinetic energy to get
over theinitial potential hill. Then the picture looks like this:

X

X

The thickness of the transition regionisagain afew \p. This an ion shock wave.
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4 Plasma sheaths

A sheath is basically a boundary layer between the plasma proper and, for example, a
contaner wall. With no magnetic field, the electrons diffuse to the wall faster than theions,
leaving a net positive chargein the plasma. An eledric fieldis set up by the resulting charge
distribution, and this field slows the electron motion. Choosing the potential in the bulk
plasma to be zero, the potential at the wall will become negative, forming a potential barrier
that repels el ectrons.

To analyze the sheath, we assume that theions are cald (T; = 0). lons drift toward the
wall with speed u( at = 0. Neglect collisions. (Thisis OK. The electrons still reach
the wall faster because their thermal speed is greater.) Then from energy conservation, the
Boltzmann relation, the continuity equation and Poisson’s equation, we retrieve the same set
of equationsthat we had for solitons. In particular, from (14), we have

%(x')Qz—V:—[l—eX—I—MZ (1—,/1_2%)]

Again we chose the constant to make V' = 0 and thus E = 0 in the bulk of the plasma, (at
£=0).

The right hand side must be positive since the left is asquare, and, aswe found before,
thismeansthat M > 1. Thisisthe Bohm sheah criterion. (For small x, the RHS is

2 L(_1 2 2
~ XN el .2 EED o)X _L)
1+<1+x+2> M <1 R VE > (2/\42))_2 <1 XVE

) Theions must be accelerated by the electric field before entering the sheath region. This
means that E cannot be zero at = = 0, aswe have assumed, but it can be very small. The
picture now looks like this:

plasma ‘L_ s mm sl

wall

The potential dopeis negaive and the curvatureisalso negative. This means that n; > n.
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throughout this region.
Since y is negdive, it is convenient to introduce a new variable ¢ = —x. (My
¥ =Chen’s x in section 8.2) Then Poisson’s equation (12) becomes:

A>T v g\ 2
F =—-e  + <1 + 2m>
When ¥ > 1 (close to the wall), this equation for ¥ becomes approximately

o\ V2
U~ (1 +2—> ~ M

M2 Nox
Multiply both sidesby ¥’ and integrate to get
% (¥')? = M2V + constant
Now it is convenient to redefine the zero level for potential so that & = 0 at some value &,
of £ where U’ is very small (essentially zero). Then we may take the constant to be zero.
Taking the square root
U = 93/4 pqL/2g1/4
and integrating again, we get
4 _.
5\113/4 = 23/4 M'/2¢ + constant
Putting in the boundary conditions, ¥ = 0 at £,
4 3/4 3 /4 1/2
=3/ — 93/ / _ ¢
- M (=€)

We may now rewrite all thisin terms of the physical variables ¢, x, v, €tc.

4 [ —ep /4 5 <x -z )
- — 93/4 p1/2 | A
3 (ch ) 2°/% M Y (24)

We areinterested in the current toward the wall in termsof the potential at the wall, where
theion currentis

j = ngeug = ngeMu;
Notetha zwa ~ x5 + d where d isthe thickness of the sheath. We find M from (24),

a2z} A
T3 x23/4 \ kT, d
95/2 3/2 02
M = (_e¢1u) .
9 02 (kT,)** @2
42 s/2 eoM
= = (edy,) 172
9 noe2 (KT,) " M d?

= ﬁ(—eqﬁ )3/2 £o
9 v nUeQUS:;]WdQ
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and thus
4\/5 900)

3/2
—e —_——
9 (—edw) noe2vsV Md?

L \3/2
AN =

Thisis the Child-L angmuir Law. Noatice that the current is independent of the plasma
density ng. The sheath thicknessd isdetermined by equation (25) once the current and the
potential are measured.

j = mnge
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