
Motion of charged particles in EM fields
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1 Uniform magnetic field

The basic motion of a charged particle in a magnetic field is a helix. Let the
magnetic field ~B be uniform. Then the equation of motion for a particle of
charge q and mass m is:

~F = q~v £ ~B = m~a

Thus the acceleration is always perpendicular to the velocity ~v. Compare
with the relation for uniform circular motion:

~a = ~ω £ ~v = ¡ q

m
~B £ ~v

Thus the angular velocity of the particle is

~ω = ¡ q

m
~B (1)

The angular speed is ωC = qB/m, the cyclotron frequency, and the direction
is along the magnetic field. The direction of the particle’s rotation depends
on the sign of the particle’s charge. An electron, with q = ¡e, has ~ω parallel
to ~B. Ions, with positive charge, rotate in the opposite sense.

The radius of the helix is given by

v? = ωr

where v? is the component of the particle’s velocity perpendicular to the
magnetic field, and thus

rL =
mv?
jqjB (2)

This radius is called the Larmor radius. A proton moving at the same speed
as an electron will have a Larmor radius 2000 times bigger than the electron’s
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Larmor radius. Thus the electrons are more closely tied to the magnetic field
lines.

The magnetic field near the surface of a neutron star is about 1012 Gauss,
or 108 T. This corresponds to

ωC =
1.6£ 10¡19 C
9 £ 10¡31 kg

108 T= 1. 8£ 1019 C
kg

T

Now do the units check out? Since we know that force is qvB, then

C ¢ T =
N

m/s

and thus
C ¢ T
kg

=
kg ¢ m/s2

kg ¢ m/s
=
1

s

and so the units check out.
This gyrational motion is the basic motion of charged particles in a

plasma. The center of the circle is called the guiding center. With a uniform
magnetic field, and no electric field, the guiding center moves at constant
speed along the field line.

The circulating charge forms a current loop, and hence has a magnetic
field of its own. This field produced by the particle’s motion is opposite the
original, uniform field. Thus the plasma is a diamagnetic material.

2 Uniform magnetic field plus uniform elec-
tric field

Without a magnetic field, an electric field causes a charged particle to ac-
celerate along the direction of ~E. But with a magnetic field, the particle
behaves more like a spinning top, and moves perpendicular to the applied
electric field. We can understand why by noting that (for positive q) the
particle speeds up as it moves parallel to ~E, thus increasing the Larmor ra-
dius (2). As the particle moves opposite ~E, v and rL decrease. Thus the
circles don’t close, and the particle drifts as shown in the diagram. Here we
show that path of an electron with ~B out of the page and ~E upward.
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Now let’s do the math. Let’s split ~E into components along and perpen-
dicular to ~B. Then the equation of motion is:

m
d~v

dt
= q

³
~E? + Ekb̂+ ~v £ ~B

´

Dotting with b̂, we find

m
dvk
dt
= qEk

the same relation as in the absence of ~B. The perpendicular component is:

d~v?
dt

=
q

m

³
~E? + ~v? £ ~B

´
(3)

The solution we expect is a combination of a gyration plus a constant drift.
Thus, in the frame moving with the guiding center, we will see only the
gyration, and the equation of motion should look like:

d (~v? ¡ ~vE)

dt
=

q

m
(~v? ¡ ~vE)£ ~B (4)

Comparing equations (3) and (4), we have:

~E? = ¡~vE £ ~B

Cross both sides with ~B to get:

~E £ ~B = ¡
³
~vE £ ~B

´
£ ~B = ¡ ~B

³
~vE ¢ ~B

´
+ ~vEB2
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We can drop the perpendicular sign on ~E because the cross product selects
only the perpendicular component. And since the drift velocity is perpen-
dicular to ~B, we have

~vE =
~E £ ~B

B2
(5)

The result is independent of both the charge and mass of the particle:
all particles have the same E-cross-B drift velocity. Changing the sign of the
charge changes the direction of gyration, but the particle also accelerates in
the opposite direction, so the direction of the drift is the same. A particle
with smaller mass has a smaller Larmor radius, but gyrates faster. The two
e¤ects combine to create the same drift velocity. Since all particles drift
at the same rate, this drift does not cause any current in the plasma, but
instead causes the whole plasma to drift together.

3 Drifts due to other constant, external forces

Any constant external force perpendicular to ~B produces a constant drift in
a similar way. In general, the equation of motion is

m
d~v

dt
= ~F + q~v £ ~B

and again we look for a solution in which the particle motion perpendicular
to ~B is gyration plus drift:

d (~v? ¡ ~vD)

dt
=

q

m
(~v? ¡ ~vD) £ ~B

Thus
~F?
m
= ¡ q

m
~vD £ ~B

and crossing with ~B gives

1

qB2
~F? £ ~B = ~vD (6)

The motion parallel to the field is uniformly accelerated motion with

ak =
Fk
m
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One particularly important example is the gravitational drift. With ~F =
m~g, we get

~vg =
m

qB2
~g £ ~B (7)

In this case the drift velocity depends on both the mass and the charge of the
particle. Particles with opposite signs of charge drift in opposite directions:
thus this drift creates a current in the plasma. Since the drift is proportional
to mass, the current is carried primarily by the ions.

The result that a plasma move sideways in a gravitational field is surpris-
ing at first sight. But suppose the plasma is contained in a vessel of finite
size with non-conducting walls. Then the current leads to a charge build-up
on the walls, and thus creates an electric field. The resulting E-cross-B drift
is downward, and so the plasma falls as expected.

4 Motion in a non-uniform field

4.1 Gradient perpendicular to ~B.

Variations in the magnitude of ~B also change the Larmor radius, and so cause
a drift. As B increases, the Larmor radius decreases, and so for a positively
charged particle the path looks as shown in the figure.
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The particle drifts in the direction of ~B £ ~rB.
Now for the math. We shall consider the case in which the length scale

over which B varies appreciably is large compared with the Larmor radius.
Then B changes by a small amount over one orbit. Thus to first order we
may neglect the change in B during one orbit.

Let ~B = Bẑ and ~rB be in the x¡direction. Then the particle’s unper-
turbed path may be decribed by:

~r = ŷ rL cosωct § x̂ rL sinωct (8)

where the choice of sign is determined by the sign of the particle’s charge,
and

~v = §v? cosωct x̂¡ v? sin ωct ŷ

The force acting on the particle has components:

Fx = qvyB = q (¡v? sinωct)
³
B0 + ~r ¢ ~rB

¯̄
¯
0

´

= ¡qv? sinωct

µ
B0 + (§rL sin ωct) ¢

∂B

∂x

¯̄
¯̄
0

¶

where we used a Tylor series expansion for ~B (~r) , and similarly

Fy = ¡qvxB = ¡q (§v? cosωct)

µ
B0§rL sin ωct¢

∂B

∂x

¯̄
¯̄
0

¶

Now we average over one orbit. All terms in sinωct, cosωct and sin ωct cosωct
average to zero. The term in sin2 ωct averages to 1/2. Thus

< Fy > = 0

and

< Fx > = ¡1
2
qv?

µ
§rL¢ ∂B

∂x

¯̄
¯̄
0

¶
= ¡1

2
sign (q) qv?rL

∂B

∂x

¯̄
¯̄
0

Now we can use this result in equation (6) to get

~vgrad B = ¡< Fx > B

qB2
ŷ

=
1

2
sign (q)

v?rL

B2
B

∂B

∂x

¯̄
¯̄
0

ŷ

= sign (q)
v?rL

2B2
~B £ ~rB (9)
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or, using equation (2) for the Larmor radius, we get

~vgrad B = sign (q)
mv2?
2 jqjB

~B £ ~rB

B2

=
mv2?
2qB

~B £ ~rB

B2
(10)

where in this last expression q is a signed quantity, negative for electrons and
positive for ions.

Since this drift again depends on the charge-to-mass ratio, we see that
electrons and ions drift in opposite directions, giving rise to a current in the
plasma. This current is also carried primarily by the ions.

Using equation (9), this drift is approximately:

vgrad B » v?
2

rL

L

where L is the scale length over which B changes (L = B/
¯̄
¯~rB

¯̄
¯). This

expression shows that this is a finite Larmor radius e¤ect. The drift depends
on the fact that over one orbit the particle samples di¤erent values of B.

4.2 Curvature drift

When the field lines are not straight, but curved, a particle moving along the
field line must be experiencing a force and thus will experience a drift. To
compute the drift, we work in the reference frame moving along the field line
with the particle. In this accelerated reference frame, the particle experiences
the fictitious centrifugal force

~Fc =
mv2k
Rc
r̂ =

mv2k
R2

c

~Rc

where Rc is the radius of curvature of the field line, vk is the speed along the
field line, and r̂ is the unit vector directed outward. Then, from equation
(6), the drift is:

~vC =
1

qB2
~F £ ~B =

mv2k
qB2R2

c

~Rc £ ~B (11)

This curvature drift is also proportional to m/q and so gives rise to a current,
carried primarily by the ions.
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Now in vacuum we must have ~r £ ~B = 0, and this means that curvature
is always accompanied by gradients in B. To see why, use cylindrical coords
and let ~B locally be described by ~B = Bµ̂. Then ~r £ ~B has only an r
component:

~r £ ~B =
1

r

∂

∂r
(rB) ẑ =0

Thus rB = constant, and thus B _ 1/r. Then

~rB = ¡
~Rc

R2
c

B

and this gives rise to a gradient drift:

~vgrad B =
mv2?
2qB

~B £ ~rB

B2
=

mv2?
2qB

~B

B2
£

Ã
¡

~Rc

R2
c

B

!

=
mv2?
2qB2

~Rc

R2
c

£ ~B

adding this to the curvature drift, we get

~vtotal drift =
m

qB2

µ
v2?
2
+ v2k

¶ ~Rc

R2
c

£ ~B (12)

4.3 Magnetic mirrors

To round out this discussion, we consider the case where the magnetic field
strength varies in the direction of ~B. Then necessarily the field lines cannot
be straight and parallel, but must converge or diverge. We put the z¡axis
along the "central" field line— the line along which the guiding center moves.
Then the Lorentz force acting on a particle is:

~F = q~v £ ~B = q
³
vθBz ½̂+ [vzBρ ¡ vρBz] µ̂¡vθBρ ẑ

´
(13)

The z¡component of the force causes the velocity of the particle along the
field line to change. The ρ¡component is the usual centripetal force causing
the particle to gyrate around the field line. The θ¡component has two parts:
the vρBz term changes speed of gyration while the drift due to the vzBρ term
causes the particle to track along the converging field lines.

~vD » 1

B2
vzBρµ̂ £ ~B = vz

Bρ

Bz
µ̂ £ ẑ = vz

Bρ

Bz
½̂
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With the guiding center on the z¡axis,

~r ¢ ~B =
1

ρ

∂

∂ρ
(ρBρ) +

∂Bz

∂z
= 0

Thus

ρBρ = ¡
Z ρ

0

ρ
∂Bz

∂z
dρ ' ¡1

2
ρ2

∂Bz

∂z

¯̄
¯̄
ρ=0

and thus for ρ ¿ L = B/ j∂Bz/∂zj

Bρ ' ¡1
2
ρ

∂Bz

∂z

¯̄
¯̄
ρ=0

Then from (13)

Fz =
q

2
vθrL

∂Bz

∂z

¯̄
¯̄
ρ=0

Now vθ will be §v?, depending on the sign of the charge (positive charges
go in the ¡θ direction) and using equation (2) we find

Fz = ¨q

2

mv2?
jqjB

∂Bz

∂z

¯̄
¯̄
ρ=0

= ¡mv2?
2B

∂Bz

∂z

¯̄
¯̄
ρ=0

The quantity

µ =
mv2?
2B

(14)

is the magnetic moment of the particle. To see why, recall that the gyrating
particle forms a current loop with current I = q/T = ωq/2π and the magnetic
moment of the current loop is

IA =
πr2Lωq

2π
=

rLv?q

2
=

mv2?
2B

= µ.

So

Fz = ¡µ
∂Bz

∂z

¯̄
¯̄
ρ=0

or, in a coordinate-free notation,

Fk = ¡µrkB

9



Thus
m

dvk
dt
= ¡µrkB

Now let s be the distance travelled along the field line by the guiding center,
so vk = ds/dt. Multiply both sides of the equation by vk to get:

vkm
dvk
dt

= ¡µ
dB

ds

ds

dt
d

dt

µ
1

2
mv2k

¶
= ¡µ

dB

dt
(15)

The magnetic force does no work, so as the particle moves along the field
line its energy must remain constant. As vk decreases, v? must increase to
compensate.

d

dt

µ
1

2
mv2

¶
=

d

dt

µ
1

2
mv2k +

1

2
mv2?

¶
= 0

Then, using the definition of µ and equation (15), we have

¡µ
dB

dt
+

d

dt
(µB) = B

dµ

dt
= 0

Thus µ does not change as the particle moves along the field line: it is an
invariant of the motion.

Strictly, µ is an adiabatic invariant. It remains constant only so long
as the system changes slowly compared with the gyrational period of the
particle. Or, equivalently, rL ¿ L, the length scale over which B changes.

Invariance of µ shows that the particle gyrates faster as the magnetic
field strength increases: the parallel velocity decreases. Eventually, if B gets
strong enough, the parallel velocity is reduced to zero. Since Fk does not
depend on the parallel velocity, it continues to act in the same direction,
and accelerates the particle back in the opposite direction: the particle is
reflected. This phenomenon is called the magnetic mirror e¤ect.

Not all particles are reflected. Obviously a particle with v? = 0 is not
reflected. We can find v? at the turning point from conservation of energy,
and the fact that vk = 0 there. Suppose a particle starts at a point where the
magnetic field strength is B0 with gyrational velocity v?0, and total speed v0.
At the turning point v? = v0, the particle’s initial speed. It will be reflected
where

1

2
m

v2?0
B0

=
1

2
m

v2?
B
=
1

2
m

v20
BTP
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Thus
B0

BTP
=

v2?0
v20

= sin2 θ

where θ is the pitch angle, the angle between the particle’s velocity vector
and the field line at the starting point. Since BTP · Bm, the maximum value
of B, this equation shows that particles with small pitch angles will not be
reflected. The continual loss of particles with small pitch angles causes the
particles’ velocity distribution to become anisotropic, leaving a hole called
the loss cone. Collisions repopulate the loss cone.

Example: the Van Allen belts
The earth’s field is essentially a dipole, with B » B0 (r0/r)3 (ignoring the

angular dependence for now). For a particle that starts at 5 earth radii and
reaches the top of the atmosphere (essentially 1 earth radius) then particles
that reflect have pitch angle given by

sin2 θ ¸ (r/r0)
3 =

1

125
sin θ ¸ 0.09

θ ¸ 5±

Thus the loss cone is very small. The particles in the loss cone are responsible
for the aurora. I have asked you to investigate this system further in Problem
set 3.

5 Non-uniform electric field

One of the most important examples of a non-uniform electric field is the
field produced by a wave, which has the form

~E = ~E0 cos kx

Using Fourier transforms, we can reduce a general variation to a sum of terms
of this form.

Now let ~B be uniform, ~B = B0ẑ, and let

~E = E0x̂ cos kx

(a longitudal wave). Then the particle equation of motion is:

m
d~v

dt
= q

³
~E + ~v £ ~B

´
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or, in components,
dvx

dt
=

q

m
E0 cos kx +

q

m
vyB0

dvy

dt
= ¡ q

m
vxB0

and
dvz

dt
= 0

Now we take a second derivative, to eliminate vx from the vy equation:

d2vy

dt2
= ¡ q

m
B0

dvx

dt
= ¡ωc

³ q

m
E0 cos kx+ ωcvy

´

and similarly

d2vx

dt2
= ¡k

q

m
E0 sinkx

dx

dt
+ωc

dvy

dt

= ¡kωcvx
E0

B0
sinkx ¡ ω2cvx

Next we average over a gyrational period to isolate the drift. We assume
slow variations of ~E (krL ¿ 1) and use the unperturbed orbit position (8)
in our expressions for the acceleration:

sin kx = sink (x0 § rL sinωt)

(cf section 4.1). Expanding the sine gives:

sinkx = sin kx0 cos (krL sinωt) § cos kx0 sin (krL sinωt)

and with krL ¿ 1,

sinkx = sin kx0

·
1¡ 1

2
(krL sinωt)2

¸
§ cos kx0 (krL sinωt)

to second order in small quantities. When we time average, only the squares
of sinωt, cosωt do not average to zero, and so

< sinkx > =

µ
1¡ 1

4
(krL)

2

¶
sinkx0
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and similarly

< cos kx > =

µ
1¡ 1

4
(krL)

2

¶
cos kx0

so

<
d2vy

dt2
> = ¡ω2c < vy > ¡ω2c

E0

B0

µ
1¡ 1

4
(krL)

2

¶
coskx0

and

<
d2vx

dt2
> = ¡ < vx > ωc

µ
k
E0

B0

µ
1 ¡ 1

4
(krL)

2

¶
sinkx0+ ωc

¶

From past experience, we expect the drift to be constant, so < d2vy

dt2 > =

< d2vx
dt2 > = 0, and thus

< vx > = 0

and

< vy >= ¡E0

B0

µ
1 ¡ 1

4
(krL)

2

¶
cos kx0

We’d like to write this in a coordinate-independent way. Remember that if
~E were constant, we would get

~vE =
~E £ ~B

B2
= ¡E0 cos kx

B0
ŷ

which is the first term of our result. The second term arises from the non-
uniformity of ~E. Thus:

~vD =

µ
1 +

1

4
r2Lr2

¶ ~E £ ~B

B2

This is another example of a finite Larmor radius e¤ect. The sign of the
charge does not e¤ect the result, but the mass of the particle enters through
rL. A larger mass particle has a larger Larmor radius and thus samples more
of the gradient of E.

6 Time-varying, uniform ~E.

Here we investigate the particle motion in an electric field of the form

~E = E0e
iωtx̂, ~B = B0ẑ

13



Again, this might be one Fourier component of a more general time variation.
We may neglect induced magnetic fields provided that the variations are slow.
(Bind » µ0ε0ωLE » ωL

c2
E where L is the length scale for variation of B. Thus

the magnetic force due to induced B is of order vωL/c2 compared with the
electric force. ) Then the Lorentz force is

~F = q
³

~E + ~v £ ~B
´
= m

d~v

dt

Thus
dvx

dt
=

q

m

¡
E0e

iωt + vyB0

¢

and
dvy

dt
= ¡ q

m
vxB0 = ¡ωcvx

Di¤erentiating again, and eliminating vx, we get

d2vy

dt2
= ¡ωc

dvx

dt
= ¡ω2c

µ
E0

B0
eiωt + vy

¶

and similarly
d2vx

dt2
= ωc

µ
iω

E0

B0

eiωt ¡ ωcvx

¶

Once again we can recognize the ~E £ ~B drift, ~vE = ¡ (E0eiωt/B0) ŷ = vE ŷ.
Let’s also define

vP =
iω

ωc

E0
B0

eiωt

Then
d2vx

dt2
= ¡ω2c (vx ¡ vP )

and
d2vy

dt2
= ¡ω2c (vx ¡ vE)

Here we have to be a little more careful, because both vE and vP are time
dependent. However,

d2vP

dt2
= ¡ω2vP

and provided that ω ¿ ωc,

d2 (vx ¡ vP )

dt2
= ¡ω2c (vx ¡ vP) +ω2vP ' ¡ω2c (vx ¡ vP )
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so we have a gyration in the frame drifting with velocity

~vP =
1

ωcB

∂ ~E

∂t
(16)

We also have the ~E £ ~B drift, which is in the ŷ direction. The new drift
with velocity ~vP (equation 16) is called the polarization drift. It depends on
both the charge and mass of the particle, since both appear in ωc, and thus
there is a polarization current :

~jP = ne (~vP+ ¡ ~vP¡) =
ne

eB2
[M ¡ (¡m)]

∂ ~E

∂t

=
ρ

B2

∂ ~E

∂t
(17)

where ρ = n (M +m) is the plasma mass density. Once again the current
is carried primarily by the ions.

This drift is a “start-up e¤ect”. As the electric field is applied, the
particles begin to move along (+ charge) or opposite (¡ charge) ~E, and only
then start to gyrate.

7 More on adiabatic invariance

7.1 Time-varying ~B

We know that the magnetic force does no work, and thus does not change the
particle’s energy. But when ~B changes in time there is an induced electric
field that does do work. From Faraday’s law

~r £ ~E = ¡∂ ~B

∂t

and thus the induced ~E is perpendicular to ~B. The equation of motion is:

m
d~v?
dt

= q
³

~E + ~v £ ~B
´

Now dot this equation with ~v? to get:

m~v? ¢ d~v?
dt

= q~v? ¢
³

~E + ~v £ ~B
´

d

dt

µ
1

2
mv2?

¶
= q~v? ¢ ~E
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Now we express v?, the gyrational velocity, as

~v? =
d~̀

dt

where
d~̀= rLdθ µ̂

is a vector element along the Larmor orbit. Thus

d

dt

µ
1

2
mv2?

¶
= q ~E ¢ d~̀

dt

Integrating over one period, we get

δ

µ
1

2
mv2?

¶
=

I

orbit
q ~E ¢ d~̀

where, provided ~B changes slowly compared with the gyrational period, we
may integrate over the unperturbed orbit. Then applying Stokes’ theorem,
we get:

δ

µ
1

2
mv2?

¶
= q

Z ³
~r £ ~E

´
¢ n̂ dA = ¡q

Z
∂ ~B

∂t
¢ n̂ dA

Note that there is a connection between the directions of d~̀and n̂ through the
right hand rule. For positively charged particles that gyrate with ~ω opposite
~B, n̂ is also opposite ~B. For negatively charged particles, n̂ is parallel to ~B.
Thus

δ

µ
1

2
mv2?

¶
= ¡q (¨) ∂B

∂t
πr2L

= §∂B

∂t
πq

µ
mv?
qB

¶2

= §∂B

∂t

1

2

mv2?
B

2πm

qB

=
∂B

∂t
µ
2π

ωc
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where ωc = jqjB/m is the cyclotron frequency, and µ is the magnetic moment
(equation (14)). Thus the change in gyrational energy over one period is

δ

µ
1

2
mv2?

¶
= δ (µB) = µδB

where δB is the change in B over one period. Thus δµ = 0, and the magnetic
moment does not change. This is the same result that we obtained in §4.3.
This analysis corresponds to the situation we’d see in the reference frame
moving with the guiding center.

This analysis also shows that the magnetic moment is proportional to the
flux enclosed within one Larmor orbit. Thus the particle moves so as to keep
the magnetic flux within its orbit a constant.

The magnetic moment is an adiabtic invariant— it remains constant only
so long as the time scale for variation of B satisfies ωcT > 2π. (i.e.ωc/ω > 1)
“Much greater than 1” is not required (although we have not proved that
here.)

7.2 The second adiabatic invariant.

A particle trapped between two magnetic mirrors, such as a particle in the
earth’s radiation belts, oscillates along the field lines at the “bounce fre-
quency”. It also drifts around the earth due to grad-B and curvature drift.
If P1 and P2 are the points at which the particle reflects at the two mirrors,
the integral

J =

Z P2

P1

vk ds

remains invariant as the particle drifts. This is a second adiabatic invariant.
It is invariant so long as changes in ~B are slow compared with the bounce
period. Since this period is much longer than the gyrational period, J is less
likely to be invariant than µ.

Invariance of J guarantees that a drifting particle returns to the original
field line after drifting through 2π radians.

Compare two neighboring field lines as shown in the diagram.
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Then
δs

Rc
=

δs0

R0
c

= δθ

Thus
δs0 ¡ δs

¢tδs
=

R0
c ¡ Rc

¢tRc

The guiding center drift is a combination of grad-B (equation 10) and cur-
vature drift (equation 12). Over most of the bounce period grad-B drift
dominates (vk ¿ v?). The radial component is

~vD ¢ r̂ =
mv2?
2qB

~B £ ~rB

B2
¢

~Rc

Rc

=
R0

c ¡ Rc

¢t

Thus

δs0 ¡ δs

¢tδs
Rc =

mv2?
2qB

~B £ ~rB

B2
¢

~Rc

Rc

1

δs

dδs

dt
=

mv2?
2qB

~B £ ~rB

B2
¢

~Rc

R2
c

We also need to know how vk varies. The total kinetic energy is

W =
1

2
mv2k +

1

2
mv2? =

1

2
mv2k +µB
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and thus

vk =

r
2

m
(W ¡ µB)

where both W and µ are constants in this expression. Thus

dvk
dt
=

r
2

m

1

2

¡µdB/dtp
W ¡ µB

and
1

vk

dvk
dt
=
1

2

¡µdB/dt

(W ¡ µB)
=

¡µdB/dt

mv2k

The magnetic field B at the particle’s position changes because of the guiding
center motion, so

dB

dt
= ~vgc ¢ ~rB =

"
m

qB2
v2k

~Rc

R2
c

£ ~B

#
¢ ~rB

and rearranging the triple scalar product,

1

vk

dvk
dt

=
¡µ

mv2k

m

qB2
v2k

~Rc

R2
c

¢
³

~B £ ~rB
´

= ¡ mv2?
2qB3

~Rc

R2
c

¢
³

~B £ ~rB
´
= ¡ 1

δs

dδs

dt

Thus
d

dt

¡
vkδs

¢
= 0

Can we now conclude that J is invariant? What if the turning points P1 and
P2 are not quite at the same point on a neighboring field line? It doesn’t
matter because vk ! 0 at the turning points, and so the contribution to the
integral due to a small change in P is negligible. Thus

J =

Z P2

P1

vkds is an adiabatic invariant.
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2nd proof of invariance of J. (Boyd andSanderson pg 29) (See also Stur-
rock, Plasma Physics Ch 4)

The invariant is

J =

I
vkds =

Z P2

P1

vkds+

Z P1

P2

vkds = 2

Z P2

P1

vkds

We begin by writing

vk =

r
2

m
(W ¡ µB)

where W = 1
2
m

¡
v2? + vk

¢
is the energy, µ (14) is the magnetic moment, and

looking at

J (W, s, t) =

Z s

s1

r
2

m
(W ¡ µB)ds

where s is a coordinate measured along the field line. Then

dJ

dt
=

∂J

∂t
+

∂J

∂W

dW

dt
+

∂J

∂s

ds

dt

where
∂J

∂t
= ¡

Z s

s1

1q
2
m (W ¡ µB)

µ

m

∂B

∂t
ds

∂J

∂W

dW

dt
= ¡

Z s

s1

1q
2
m
(W ¡ µB)

ds

½
vk

∂vk
∂t
+

µ

m

∂B

∂t
+

µ

m
vk

∂B

∂s

¾

and
∂J

∂s

ds

dt
=

r
2

m
(W ¡ µB)vk ¡ vk

Z s

s1

1q
2
m
(W ¡µB)

µ

m

∂B

∂s
ds

Now we want to evaluate
dJ (W, s1, t)

dt

and we note that at s = s1, vk = 0 since this is a turning point. Thus many
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of these terms vanish. We are left with

dJ (W, s1, t)

dt
= ¡

Z s

s1

1q
2
m
(W ¡ µB)

µ

m

∂B

∂t
ds

¡
Z s

s1

1q
2
m
(W ¡ µB)

ds
µ

m

∂B

∂t

= ¡
Z T/2

0

µ

m

∂B

∂t
dt ¡ µ

m

∂B

∂t
(s1)

Z T/2

0

dt

where we used the fact that ds/vk = dt, and T is the bounce period. Evalu-
ating the integrals, we get

dJ (W, s1, t)

dt
=

µ

m

·
B (0) ¡ B

µ
T

2

¶
¡ T

2

∂B

∂t

µ
T

2

¶¸

Now we may expand B in a Taylor series, to get

B (0) = B

µ
T

2

¶
¡ T

2

∂B

∂t

µ
T

2

¶
+
1

2

µ
T

2

¶2 ∂2B

∂t2
+ ¢ ¢ ¢

Thus
dJ (W, s1, t)

dt
=

µ

m

·
¡T

∂B

∂t

µ
T

2

¶
+ ¢ ¢ ¢

¸

and is of order
µB

m

µ
T

τ

¶

where τ is the time-scale for change in B. Thus J is invariant provided that
T ¿ τ.

7.3 The third adiabatic invariant

There are three adiabatic invariants because the particle has three degrees of
freedom. These are the integrals of the motion (cf your classical mechanics
course). The third invariant is ©, the flux enclosed by the orbit of the
guiding center as it drifts. This is invariant when system changes are slow
compared with the guiding center orbit period. Since this is quite long, this
third invariant is much less useful than the first two.
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