Motion of charged particles in EM fields
Jan 07

1 Uniform magnetic field

The basic motion of a charged particle in a magnetic field is a helix. Let the
magnetic field B be uniform. Then the equation of motion for a particle of
charge ¢ and mass m is:

F= qu X B =ma

Thus the acceleration is always perpendicular to the velocity v. Compare
with the relation for uniform circular motion:

A=WXU=——B XU
m

Thus the angular welocity of the particle is

5= -LB 1)
m
The angular speed is wc = ¢B/m, the cyclotron frequency, and the direction
is along the magnetic field. The direction of the particle’s rotation depends
on the sign of the particle’s charge. An electron, with ¢ = —e, has & parallel
to B. lons, with positive charge, rotate in the opposite sense.
The radius of the helix is given by

V] = WwWr

where v, is the component of the particle’s velocity perpendicular to the

magnetic field, and thus
muv

" 1aB @

This radius is called the Larmor radius. A proton moving at the same speed
as an electron will have a Larmor radius 2000 times bigger than the electron’s

1



Larmor radius. Thus the electrons are more closely tied to the magnetic field
lines.

The magnetic field near the surface of a neutron star is about 10'? Gauss,
or 10® T. This corresponds to

1.6 x 10-19 C C
e 0f T =1.8x10° =T
We =g 0o kg 810753

Now do the units check out? Since we know that force is quB, then

N
T =—
= m/s

and thus
C-T kg -m/s’
kg kg-m/s

1
s
and so the units check out.

This gyrational motion is the basic motion of charged particles in a
plasma. The center of the circle is called the guiding center. With a uniform
magnetic field, and no electric field, the guiding center moves at constant
speed along the field line.

The circulating charge forms a current loop, and hence has a magnetic
field of its own. This field produced by the particle’s motion is opposite the
original, uniform field. Thus the plasma is a diamagnetic material.

2 Uniform magnetic field plus uniform elec-
tric field

Without a magnetic field, an electric field causes a charged particle to ac-
celerate along the direction of £. But with a magnetic field, the particle
behaves more like a spinning top, and moves perpendicular to the applied
electric field. We can understand why by noting that (for positive ¢) the
particle speeds up as it moves parallel to E, thus increasing the Larmor ra-
dius (2). As the particle moves opposite £, v and r; decrease. Thus the
circles don’t close, and the particle drifts as shown in the diagram. Here we
show that path of an electron with B out of the page and E upward.
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Now let’s do the math. Let’s split E into components along and perpen-
dicular to B. Then the equation of motion is:

—

d _ A o
md_::q<EL+EHb+77X B)

Dotting with b, we find

the same relation as in the absence of B. The perpendicular component is:

%:%(Eﬁmxé) 3)

The solution we expect is a combination of a gyration plus a constant drift.
Thus, in the frame moving with the guiding center, we will see only the
gyration, and the equation of motion should look like:

d (71 — )
dt

—

— L (7, — i) x B @
m
Comparing equations (3) and (4), we have:
EJ_ = —’UE X é
Cross both sides with B to get:
Exgz—(ﬁEx§> x§:—§<UE-§>+27EB2
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We can drop the perpendicular sign on E because the cross product selects
only the perpendicular component. And since the drift velocity is perpen-
dicular to B, we have o
Ty = ©)
The result is independent of both the charge and mass of the particle:
all particles have the same E-cross-B drift velocity. Changing the sign of the
charge changes the direction of gyration, but the particle also accelerates in
the opposite direction, so the direction of the drift is the same. A particle
with smaller mass has a smaller Larmor radius, but gyrates faster. The two
ecects combine to create the same drift velocity. Since all particles drift
at the same rate, this drift does not cause any current in the plasma, but

instead causes the whole plasma to drift together.

3 Drifts due to other constant, external forces

Any constant external force perpendicular to B produces a constant drift in
a similar way. In general, the equation of motion is

—

a7 - B}
md—§=F+qz7xB

and again we look for a solution in which the particle motion perpendicular
to B is gyration plus drift:

Thus =
F —
—L = —iﬁp X B
m m
and crossing with B gives
L xBov ©)

The motion parallel to the field is uniformly accelerated motion with
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One particularly important example is the gravitational drift. With F=
mg, we get
Ug ==——3g X B (7

In this case the drift velocity depends on both the mass and the charge of the
particle. Particles with opposite signs of charge drift in opposite directions:
thus this drift creates a current in the plasma. Since the drift is proportional
to mass, the current is carried primarily by the ions.

The result that a plasma move sideways in a gravitational field is surpris-
ing at first sight. But suppose the plasma is contained in a vessel of finite
size with non-conducting walls. Then the current leads to a charge build-up
on the walls, and thus creates an electric field. The resulting E-cross-B drift
is downward, and so the plasma falls as expected.

4 Motion in a non-uniform field

4.1 Gradient perpendicular to B.

Variations in the magnitude of B also change the Larmor radius, and so cause
a drift. As B increases, the Larmor radius decreases, and so for a positively
charged particle the path looks as shown in the figure.

-, ——— grad B
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The particle drifts in the direction of B x VB.

Now for the math. We shall consider the case in which the length scale
over which B varies appreciably is large compared with the Larmor radius.
Then B changes by a small amount over one orbit. Thus to first order we
may neglect the change in B during one orbit.

Let B = B2 and VB be in the z—direction. Then the particle’s unper-
turbed path may be decribed by:

=19 rpcoswe + & rpsinw.t (8)

where the choice of sign is determined by the sign of the particle’s charge,
and
U= ®v, coswt X — vy sinwt ¥

The force acting on the particle has components:

F, = quyB=q(—visinwt) (Bo +7 ﬁB’ >
0

GB)
0

ox
where we used a Tylor series expansion for B (7) , and similarly

0B
F, = —qu,B = —q(Fv, cosw.t) <Boj:rL sin w, t- o

2

Now we average over one orbit. All terms in sin w.t, cos w.t and sin w.t cosw .t
average to zero. The term in sin®w.t averages to 1/2. Thus

= —qusinwt <Bo + (£rpsin wet) -

<F,> =0
and 1 0B 1 0B
<Fp,> =-—= +rp — = —=sign —
Now we can use this result in equation (6) to get
. <F,>B,
UgradB — _W
1. viry 0B
= =sign B—| 3
. VITL 3 =
= sign(q) WB x VB 9



or, using equation (2) for the Larmor radius, we get
mv? B x VB
2lq|B B2
mv? B x VB

2¢qB B2

27gradB = Sign (Q)

(10)

where in this last expression ¢ is a signed quantity, negative for electrons and
positive for ions.

Since this drift again depends on the charge-to-mass ratio, we see that
electrons and ions drift in opposite directions, giving rise to a current in the
plasma. This current is also carried primarily by the ions.

Using equation (9), this drift is approximately:

vl

tord 8~ 57

where L is the scale length over which B changes (L = B/ NB‘). This

expression shows that this is a finite Larmor radius ecect. The drift depends
on the fact that over one orbit the particle samples dicerent values of B.

4.2 Curvature drift

When the field lines are not straight, but curved, a particle moving along the
field line must be experiencing a force and thus will experience a drift. To
compute the drift, we work in the reference frame moving along the field line
with the particle. In this accelerated reference frame, the particle experiences
the fictitious centrifugal force

2
=~ muv R _mv —
]*ﬂc——l'l-]__gC r = 2 R.
where R, is the radius of curvature of the field line, v is the speed along the

field line, and t is the unit vector directed outward. Then, from equation
(6), the drift is:

2
— v —
Gp=—F x B = R xB (11)
q 2

This curvature drift is also proportional to m/q and so gives rise to a current,
carried primarily by the ions.



Now in vacuum we must have V x B = 0, and this means that curvature
is always accompanied by gradients in B. To see why, use cylindrical coords
and let B locally be described by B = BO. Then V x B has only an r
component:

Thus r B = constant, and thus B oc 1/r. Then

—

o R,
VB = _R_EB

and this gives rise to a gradient drift:

— x |-=B

. mv? B x VB mo? B " R.
v =
grad B 2B B2 2¢B B2 R?

mv? R, " B
2¢B? R?

adding this to the curvature drift, we get

) L
. m (v} o\ e 5
oot (2L 2w B 12
Utotal drift PRE ( 5 +U|> R2 X (12)

4.3 Magnetic mirrors

To round out this discussion, we consider the case where the magnetic field
strength varies in the direction of B. Then necessarily the field lines cannot
be straight and parallel, but must converge or diverge. We put the z—axis
along the "central™ field line— the line along which the guiding center mowes.
Then the Lorentz force acting on a particle is:

F= qu’ X B= q (UQBZ p+ [v:B, — v,B,] é_UGBp 2) (13)

The z—component of the force causes the velocity of the particle along the
field line to change. The p—component is the usual centripetal force causing
the particle to gyrate around the field line. The #/—component has two parts:
the v, B, term changes speed of gyration while the drift due to the v.B, term
causes the particle to track along the converging field lines.

1 A o B, B
UD ~ ?UZBPH X B = ’Uzﬁfg X Z = Uzgfﬁ



With the guiding center on the z—axis,

-

10 0B,

.B===—(pB =0
Thus P 0B 1, 0B
B, =— dp ~ —=p? ==

pB, /Opaz =

and thus for p < L = B/ |0B,/0z|

1 0B,
P 2p 0z

p=0

Then from (13)
q IB.
Fz = =VgT'[,
2 0z p=0
Now vy will be +v,, depending on the sign of the charge (positive charges
go in the —@ direction) and using equation (2) we find

_amid 0B _ it B,
- 2lg| B 0z |, 2B 0z |,
The quantity
s (14)

2B

is the magnetic moment of the particle. To see why, recall that the gyrating
particle forms a current loop with current I = q/T = wq/27 and the magnetic
moment of the current loop is

2 2
Triwq  rpuiq  mui

TA = = u.
o 2 °oB M
So iy
F,=—p—
0z =0

or, in a coordinate-free notation,

Fy=—-uV B



Thus

— —uVB
il

Now let s be the distance travelled along the field line by the guiding center,
so v = ds/dt. Multiply both sides of the equation by v to get:

dv dBds
e o rn
d (1 dB
a(?”“n) T (15)

The magnetic force does no work, so as the particle moves along the field
line its energy must remain constant. As v decreases, v must increase to

compensate.

d (1 d(1 , 1

Et (Emv ) = % (Emv” + EmUL) =0
Then, using the definition of 1 and equation (15), we have

dB d dpu
W T B = By =0
Thus p does not change as the particle mowes along the field line: it is an
invariant of the motion.

Strictly, p is an adiabatic invariant. It remains constant only so long
as the system changes slowly compared with the gyrational period of the
particle. Or, equivalently, r;, < L, the length scale over which B changes.

Invariance of ;1 shows that the particle gyrates faster as the magnetic
field strength increases: the parallel velocity decreases. Eventually, if B gets
strong enough, the parallel velocity is reduced to zero. Since Fj does not
depend on the parallel velocity, it continues to act in the same direction,
and accelerates the particle back in the opposite direction: the particle is
reflected. This phenomenon is called the magnetic mirror ecect.

Not all particles are reflected. Obviously a particle with v; = 0 is not
reflected. We can find v, at the turning point from conservation of energy,
and the fact that v = 0 there. Suppose a particle starts at a point where the
magnetic field strength is By with gyrational velocity v, ¢, and total speed .
At the turning point v, = vy, the particle’s initial speed. It will be reflected

where
1 03, 1 2
Em_ — -

2
Vo

1
—_— =) ) —
2 Drp

B, 2B

10



Thus )
ﬁ — 2o _ sin? 6
Brp v%
where 6 is the pitch angle, the angle between the particle’s velocity vector
and the field line at the starting point. Since Btp < B,,, the maximum value
of B, this equation shows that particles with small pitch angles will not be
reflected. The continual loss of particles with small pitch angles causes the
particles’ velocity distribution to become anisotropic, leaving a hole called
the loss cone. Collisions repopulate the loss cone.
Example: the Van Allen belts
The earth’s field is essentially a dipole, with B ~ By (ro/r)° (ignoring the
angular dependence for now). For a particle that starts at 5 earth radii and
reaches the top of the atmosphere (essentially 1 earth radius) then particles

that reflect have pitch angle given by

.9 3
o > = —
sin > (r/ro) o
sinf > 0.09
g > 5°

Thus the loss cone is very small. The particles in the loss cone are responsible
for the aurora. | have asked you to investigate this system further in Problem
set 3.

5 Non-uniform electric field

One of the most important examples of a non-uniform electric field is the
field produced by a wave, which has the form

E = Eo cos kx

Using Fourier transforms, we can reduce a general variation to a sum of terms
of this form.
Now let B be uniform, B = Byz, and let

E = Eox cos kx

(a longitudal wave). Then the particle equation of motion is:

m%—q<ﬁ+ﬁxé>
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or, in components,

dv, ¢ q
— = —F —vy B
o — ocoskx—i-mvy 0
dvy q
— - .8
dt mv 0
and q
(%
=0
dt

Now we take a second derivative, to eliminate v, from the v, equation:

d2U q dvx q
dt2y = ——-By—= = —w. (EEO cos kx + wcvy)
and similarly
d?v, q x dv
—k—Ep sin ka— + w,—=
T — 0 Sin xdt +w o

Ey .
= —kw.y=—sinkxr — wzvx
By ¢

Next we average over a gyrational period to isolate the drift. We assume
slow variations of £ (kr; < 1) and use the unperturbed orbit position (8)
in our expressions for the acceleration:

sin kx = sink (xo &+ 7z sinwt)
(cf section 4.1). Expanding the sine gives:
sin kx = sin kxzg cos (kry, sinwt) %+ cos kzgsin (kry, sinwt)

and with krp < 1,
) ) 1 ) 2 )
sinkx = sin kxg |1 — 3 (krpsinwt)”| 4+ coskxg (krpsinwt)

to second order in small quantities. When we time average, only the squares
of sinwt, coswt do not average to zero, and so

1
<sinkzr > = <1 ~1 (l{;’r’L)z) sin kx
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and similarly

1
< coskr > = <1 ~1 (er)z) cos kxg
> d? E 1
< dtvzy > = —wl< vy, > —w3§2 (1 — 7 (er)2) cos kg
and
2
< % > = — <, > W, (kg—z (1 — i (er)2) sin kxg + wc)

d?v,

From past experience, we expect the drift to be constant, so < =z > =
<L > =0, and thus

and . .
< vy >= _B_z (1 m (l{:rL)2) cos kx

Wed like to write this in a coordinate-independent way. Remember that if
E were constant, we would get

—

Ex B Eycoskx |
/UE: =

B2 By Y

which is the ﬁrf,t term of our result. The second term arises from the non-
uniformity of £. Thus:

. 1 599 ExB
p=11+ ZTLV 2B
This is another example of a finite Larmor radius eaect. The sign of the
charge does not exect the result, but the mass of the particle enters through

rr. A larger mass particle has a larger Larmor radius and thus samples more
of the gradient of .

6 Time-varying, uniform E.
Here we investigate the particle motion in an electric field of the form
E = Eye™'%, B = By
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Again, this might be one Fourier component of a more general time variation.
We may neglect induced magnetic fields provided that the variations are slow.
(Bing ~ toeowLE ~ °;—2LE where L is the length scale for variation of B. Thus
the magnetic force due to induced B is of order vwL/c?> compared with the
electric force. ) Then the Lorentz force is

S ., = dv
F=g(E+0xB) =m—
q +v X mdt
Thus y
Uz q W
T (Poct v Bo)
and p
TU;L = —ivao = — Wy
Dircerentiating again, and eliminating v,,, we get
F = —ch = —w, B—Oe + Uy
and similarly

2
d Uy =w (iwﬁe“"t—w v)
- C B CcCYXx
0

Once again we can recognize the £ x B drift, o5 = — (Eoe™t/By)§ = vp §.
Let’s also define

w Ey o
vp = ——
P We Bo
Then
d?v,
= —w? (v, —vp)
and P
v
dto = _WE (vx - UE)

Here we have to be a little more careful, because both vg and vp are time
dependent. However,

= —W U
dt? r
and provided that w < w,
2 (y. —
%ﬁ“ﬂ = —w? (v, — vp) +w?vp ~ —w? (v, — vp)
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so we have a gyration in the frame drifting with velocity

1 0E
vp = weB Ot
We also have the E x B drift, which is in the § direction. The new drift
with velocity vp (equation 16) is called the polarization drift. It depends on

both the charge and mass of the particle, since both appear in w,., and thus
there is a polarization current:

(16)

- . . ne OE
p = me(Ups —Up-) = —=5 [M = (=m)] —=
_ L9k
B2 ot ()

where p = n (M + m) is the plasma mass density. Once again the current
is carried primarily by the ions.

This drift is a “start-up ecect”. As the electric field is applied, the
particles begin to move along (+ charge) or opposite (— charge) E, and only
then start to gyrate.

7 More on adiabatic invariance

7.1 Time-varying B

We know that the magnetic force does no work, and thus does not change the
particle’s energy. But when B changes in time there is an induced electric
field that does do work. From Faraday’s law

- - 8B
VXE:_E

and thus the induced E is perpendicular to B. The equation of motion is:
47 B} 3
e (E 4T x B)
Now dot this equation with 7, to get:
dv |

mﬁl-w = qﬁ]_-(E_;—i—UXB’)

d ]. - -
a(amﬂi) = qu, - E



Now we express v, , the gyrational velocity, as

Gl

LT
where . A
dl = rrdo 0

is a vector element along the Larmor orbit. Thus

d (1 L4l
= (= —gF .=
dt (2”““) T

Integrating over one period, we get

o (lmvi> = j{ qE - dl
2 orbit

where, provided B changes slowly compared with the gyrational period, we
may integrate over the unperturbed orbit. Then applying Stokes’ theorem,
we get:

1, e 0B
5(§va>—q/(V><E>-ndA——q E-ndA

Note that there is a connection between the directions of ¢ and f through the
right hand rule. For positively charged particles that gyrate with ¢ opposite
B, 11 is also opposite B. For negatively charged particles, i is parallel to B.
Thus

3(gm2) =~ GEmt

a_Blmvi 2mm
gt2 B ¢B
9B 2r

ot " we
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where w. = |q| B/m is the cyclotron frequency, and . is the magnetic moment
(equation (14)). Thus the change in gyrational energy over one period is

o (%mvi) = (uB) = uéB

where 6B is the change in B over one period. Thus éu = 0, and the magnetic
moment does not change. This is the same result that we obtained in §4.3.
This analysis corresponds to the situation we’d see in the reference frame
moving with the guiding center.

This analysis also shows that the magnetic moment is proportional to the
flux enclosed within one Larmor orbit. Thus the particle moves so as to keep
the magnetic flux within its orbit a constant.

The magnetic moment is an adiabtic invariant- it remains constant only
so long as the time scale for variation of B satisfies w.T" > 2r. (i.e.w./w > 1)
“Much greater than 1” is not required (although we have not proved that
here.)

7.2 The second adiabatic invariant.

A particle trapped between two magnetic mirrors, such as a particle in the
earth’s radiation belts, oscillates along the field lines at the “bounce fre-
qguency”. It also drifts around the earth due to grad-B and curvature drift.
If P, and P, are the points at which the particle reflects at the two mirrors,

the integral
P
J :/ UH ds
P

remains invariant as the particle drifts. This is a second adiabatic invariant.
It is invariant so long as changes in B are slow compared with the bounce
period. Since this period is much longer than the gyrational period, J is less
likely to be invariant than ..

Invariance of J guarantees that a drifting particle returns to the original
field line after drifting through 27 radians.

Compare two neighboring field lines as shown in the diagram.

17



ag'

As
R
B

8
Then 5 5o
S S

—_— = — =00
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Thus

6s' —ds R, — Re
Atés — AtR,
The guiding center drift is a combination of grad-B (equation 10) and cur-

vature drift (equation 12). Over most of the bounce period grad-B drift
dominates (vy < v,). The radial component is

o . _miBxVB R _ R —R

b "oy B2 R, At
Thus

(55’—(55R B mviéxﬁB.i

Atés ¢ 2qB B2 R.
1 dds mvig x VB éc
§s dt ~—  2qB  B? R?

C

We also need to know how v varies. The total kinetic energy is

1 1 1
W = Emvﬁ + Emvi = Emvﬁ +uB
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and thus
2
V| = E (W - ,uB)

where both W and p are constants in this expression. Thus
doy /21 —pdB/dt
dt — Nm2\/W =B

ldvyy 1 —pdB/dt  —pdB/dt

o dt — 2(W—uB) mvﬁ
The magnetic field B at the particle’s position changes because of the guiding
center motion, so

and

B, = m zﬁc = =
E:UchB: EUHR_%XB -VB
and rearranging the triple scalar product,
1 dv —u m zﬁc 5 S
- = ———2=—=.(BxVB
v dt muf qB2U”R§ ( XV )
2
mvi R (a - ) 1 dis
= — — . (BxVB) = ———
a2 PV bs dt
Thus
d
= (v)95) =0

Can we now conclude that J is invariant? What if the turning points P, and
P, are not quite at the same point on a neighboring field line? It doesn’t
matter because v — 0 at the turning points, and so the contribution to the

integral due to a small change in P is negligible. Thus

B,
J :/ v|ds is an adiabatic invariant.
1
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2nd proof of invariance of J. (Boyd andSanderson pg 29) (See also Stur-
rock, Plasma Physics Ch 4)
The invariant is

P P P
J = 7{@|ds = / v||ds+/ vyds = 2/ v ds
Py P P

We begin by writing
2

— (W~ uB)

v =

where W = im (vzL + v”) is the energy, 1 (14) is the magnetic moment, and

2
looking at
52
J (W, s,1) :/ \/E(W—MB)CZS

where s is a coordinate measured along the field line. Then

4J _9J  9JdW  9Jds
dt Ot  OW dt = Osdt

where i
9 / L1 rIB.
825 51 /%(W—ILLB)m at
oW dt 1 (/2 (W — uB) ot mot m " 0s
and

%Z—SZ\/E(W—MB)UII—UI/ /—1 M%ds
s dt m 51 %(W—,uB)m S

Now we want to evaluate
dJ (W, S1, t)

dt
and we note that at s = s;, vy = 0 since this is a turning point. Thus many
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of these terms vanish. We are left with

dJ (W, s1,t) _/5 1 OB
d .

where we used the fact that ds/v = dt, and T' is the bounce period. Evalu-
ating the integrals, we get

W:ﬁ [B(O) —B@) —%%_f (g)}

Now we may expand B in a Taylor series, to get
T\ TOoB (T\ 1[T\*&B
B0) —B<?> o (5) 3 (3) EE

dJWisut) _ p {_T@_B (Z)+]

Thus

and is of order

where 7 is the time-scale for change in B. Thus J is invariant provided that
<.

7.3 The third adiabatic invariant

There are three adiabatic invariants because the particle has three degrees of
freedom. These are the integrals of the motion (cf your classical mechanics
course). The third invariant is ®, the flux enclosed by the orbit of the
guiding center as it drifts. This is invariant when system changes are slow
compared with the guiding center orbit period. Since this is quite long, this
third invariant is much less useful than the first two.
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