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Magetohydrodynamics (MHD) is the study of plasma mations in the low frequency
approximation, w < w,, w.. That means that we use the plasmaapproximation (n. ~ n;)
while alowing for non-zero electric fields and also currents that depend on the small
difference between n. and n;. MHD is avery useful tool for studying bulk motion of
plasmas and MHD waves in astrophysical and lab situations.

1 The equation of motion

We may write an equaion of motion for each spedes, including the momentum transfer
dueto cdllisions. For the ions:
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with asimilar equation for the dectrons:
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The term ﬁei is the rate of momentum transfer from ions to electrons (Diffusion notes
equation 21): . .
Pei:nz (17i_6€)6277:_‘P1:e (3)
If we add the two equations, we can eliminate thisterm:
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Now we define an average ve ocity using the total momentum density p"
L (M +m)d = M3 +md, @)
n
The total pressureisthe sum of the partial pressures,
P=PF+F,
thecurrent is
J=mne (¥ — V), ®)
and the mass density is
p=n(M+m)



We these definitions, the equation of motion becomes:
ov . =\ N =\ - | _ ? 5 = -
pa—l—n{M(Ui-V)vi—i-m(ve-V)ve}—j x B —VP+ pg (6)

The convective derivative terms may be neglected for motions that are subsonic and
sub-Alfvenic. In fact, we may replace these terms® with an equivalent term in 7 (see
problem set 11)
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We compl ee the set with the two continuity equations, which add to give
dp =
£ A pT) = 8
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and subtract to give the charge conservation equation:
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We also need an equation that gives us the time evolution of the current. So multiply
equation (1) by m, equation (2) by M and subtract:
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Using the definition (5) of current, and expressing the callision term (3) in terms of
resistivity, we have
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where (using egn 4)
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To proceed, we make use of the fact that m <« M, so that p ~ nM, for example, and assume
T, isnot > T,.
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L Srictly wemust alsore-evaduate the pressure intermsof random motions bout the MHD velocity 7. P. and P;
ae evaluated with resped to the eledron and ion mean velocities v, and v;. Of
ooursethese three veodties are almost the samein the plasma approximetion.
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Divide out the density:
m0 (i) (5 9) i (5 9) ] = (F b B) —enf- Ly T
(11)

Now compare the magnitude of terms on the left with those on theright:
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where 7 is thetime-sca e over which physical properties such as j and n are changing.

This ratio is small provided that time scales of interest are long compared with the electron
cyclotron period.
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This ratio is small provided the time scd es we are considering are long compared with N
plasma oscillation periods.
(For future reference note that
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The convedtive derivative term is of the same order as the time derivative term
R0 L =\ _.]ent vj] ent v
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Thus we may neglect all terms on theleft hand side in the slow (MHD) approximation,
whichwe may now state more specifically as:

N
T > —=
Wp
and
1
T > w_
Then the current equation (10, 11) becomes: ‘
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Thisis Ohm’s law. There are several changes from the version we are used to seeing. The
U x B term merely generalizes to the total electromagnetic force driving current. The
additional terms on the right side are the Hall currentterm j x B/en and aterm that depends
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on the electron pressure gradient. This is adiffusion term.
The Hall current term may be compared with the other termsin the equation. Remember
that from the Maxwdl equations, j ~ V x B /u, ~ B/Lp,. Thus
Hal curent term B eB  meg c? we @ 1

~ =

5 2 We™3 2
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and so the Hall current term may be neglected if time scales are sufficiently long:
2
7> S (15)
wp v
This conditions is often satisfied, especially in atstronomical applications where time scales
arevery long and w.. /w,, is small. .
Now let’s comparethe grad P term with the resistivity term:
P nkTe m Lp,
Lennj Lm e2nn B

We already calculaed the middle ratio (egn 12), so:
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This grad P term may be neglected when:
Ui

w
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i.e. most of thetime, since v, e/c is usually small..
Finally we can even neglect the resistivity when

nJ nB 1 7
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n
must be very large. Thisnumber is called the magnetic Reynolds number.
Equivalently, using relation 13 and L = v, this condition is
j B 1 2 21
i 0B i () <1
vB LopyB vLpgeow,Np vLw,Np v/ wpTNp
c\?2 1
- 17
T> (v) wpNp (17
For example, in interstellar space, with w, ~ 6 x 10* rad/sand v ~ 10 km/s, we would
need )
S 3 x 10°* m/s 1 1 0075 s
’ 10°mis ) 6x104/s2 x 106

whichis always true.
Ohm’slaw is often used to find the plasmavelocity.



2 Diffusion in fully ionized plasmas

Now we are ready to study diffusion in fully ionized plasmas. In asteady stae, zero g
plasma, equation (7) becomes L
jxB=VP (18)
Here we see that the magnetic force on the (usually small) plasma currents balances the
pressure gradient. From Ohm’slaw (14), neglecting the termsin parentheses,

E+0xB= nj
We crosswith B to solvefor 4 :

and thus L. .
Ex B M
B2 B2
The first term isthe £ x B drift, while the second is the diffusion term. The partide flux
dueto diffusionis:

nk (T; + T,) Vn

ﬁl = m?l =N B2
whichis Fick’slaw with a diff usion coefficient
D, = nnk Té:— Ie (19)

The dependenceon B (D « 1/B?) isthe same a we found in partially ionized plasmas
(diffusion2 notes egn 18). The temperaure dependence is different, however. Since
n o T732 D « T~'/? and decreases as T' increases. In partially ionized plasmas
D x T3/? and increases as 1" increases. The difference arises from the temperature
dependence of the coulomb cross section. At high temperatures there are fewer callisons
and so less mation of the guiding centers. Another important difference isthat this diff usion
coefficient depends on the plasmadensity (because plasma partides are colliding with
themselves). Equation (19) describes so-called classical diffusion.

Thereisno transverse mobility! Instead, we have the E x B drift.

2.1 Solutions to the diffusion equation

2.1.1 Time dependence

We write D = 2nA where A = nkT/B? and we have assumed 7, = T;. Then the
continuity equation is

8 . on -
rn +V-(nd)=0= 5 +V- (—QnAVn)
or, if A is constant: 5
n
= AV?n?
ot vin



anon-linear, partial differential equation for n. Let’stry to find asolution by separating:
n(t,r)=T ()R (r). Then
1Ldl' Ao » 1

T2 dt R T
where as usual we have assumed that n is decreasing in time and thus chosen a negative
separation constant. We may solve the temporal part to get

Lo Lt
T T, T
T

T - ——0

1+T0t/7'

so the density decreasesas 1/t at long times.

2.1.2 Steady state solutions

With a source or sink we can find steady state sol utions:

—AV2 =58
If the sink is recombination, then
—AV?n? = —an?
and we can solve thislinear equation for n2. In 1-D, setting f = n?,
2f «
2z Al

with solution
- 1= oo ([5)

The plasma density decreases over ascale length

[A
L~ 24—
o

Experimentally we often find D oc 1/ B rather than the 1/B? dependence predicted by
classical diffusion. An empirical formula for this Bohm Diffusion is
kT
~ 16eB
Since Dp isindependent of » it leads to an exponentid decay in time, which is catastrophic
for containment.
Bohm diffusion corresponds to having a collision frequency of order the cydotron
frequency. Recall (diffusion notes eqn 22)

mv m eB B

o — ) — — —

ne2 ne?m ne

2.2 Bohm diffusion

Dp

(20)



wherewe put v = w,.,and thus

kKT kT
D ~ — —
TR TR
The same dependenceresultsif E x B drift dominatesthe collisional diffusion.
F ~ n—
"B
and
ePmax ~ kT,
0 k k
T T\ n
F ~ ~ — — D
"eBL (eB T~ Devn

The Bohm diffusion coefficient is often much larger than the classical diffusion coefficient.
The confinement time may be estimated as

L2

T A —

where L is acharacteristic length scale. The confinement time scales inversely with D.
Chen cdculates values of D (classical and Bohm diffusion) for a 100 eV plasmainal

T field, and shows that D is four orders of magnitude larger than the classical diffusion
coefficient, leading to confinement times of the order of secondsrather than hours.

3 Astrophysical MHD

3.1 Magnetic field evolution

To make the MHD equations really useful, we need to include an equation governing the
—
evolutionof B.  This comes from Maxwell’sequaions. The Ampere-Maxwell law is

N
- = - OE
V xB =g +M060W (21)

The last term is the displacement current term, and in low-frequency motions, we can
—= —
neglect thisterm.  From Ohm’slaw, if theresistivity n issmdl,then E ~ ¥V x B and so:

Ho€o (aﬁ/at) N vB/ (7'02) N (2)2

- — ~ ~ (22)
V x B B/L c
whichwe expect to be small in almost all situations.
The other Maxwell equation we need is Faraday’s law:
VxE= 7? (23)

Now take the curl of Ohm’s law:
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o R

Substitutein for curl E and for f :
OB V xB 1

iV x (7 xﬁ) -V x <n a >+ (Hall term) + —=Vn x VP, (24)
en

ot Lo

If T isconstant, then %W’Pe and the last term is zero.  Then if we neglect the Hall
- —
term, and use the Maxwell equation V - B = 0, the RHS of equation (24) becomes:
L v*B.
Ho

Now let’sinvestigate the LHS.  To seewhat it means, integrate over a surface S with
bounding curve C.  Then:

5 [ Bk [[0x (vxB)] dk = gos- [ (vxB).a?

The last term may be rewritten as :
/ B- (7 X d?)
C

which we recognize as therate at which flux is swept up by the surface moving at velocity

—

v. ThustheLHSisjust 4B /dt, alowing for the effects of amoving frame.  Thusthis
equation (24) is a diffusion equation for E), with diffusion coeffident /.. The fidd
diffuses in a characteristic time
Tatt & L2y /1. ()

Thus if resistivity is small, the diffusion time becomes very long (the usual casein

astrophysics).
We may define the magnetic Reynolds number:

Ry = —2 (26)
where L and v are characteristic length and velocity scales for the flow. Diffusion
dominates when R, < 1 (the usual |ab situation) but convection of the field with the fluid
dominates when R,; > 1 (the usual astrophysical situation).

What happens to the magnetic field energy as E) changes? Field lines are moving
through the plasma, induced currents flow and we have ohmic heating. The current has
magnitude:




where L is a characteristic length scale for variations in the plasma. Thus energy is

dissipated at arate:
ni* =n (if
o o fo L
Thus the fidd energy isdissipated in atime

B?%/2 1
D SR 27)
o _ n(B/uoL) U
This is also the timescale for field to diffuse into a plasma.

Tdis

Let’s look at the highly conductive case (n ~ 0), neglecting the Hall current term. Then
egn (24) becomes:
N
B —
9B _ V x (7 X B) =0
t
| . —
Expanding the curl,andusing V - B =0,

—+(V-V)B+B(V.-¥)-(B-V)v=0

We may combinethe first two terms, since the second is the convective derivative. We
—
use the continuity equation to eliminate V - v in the third term, to get:

-
dB = 1dp = =\ -
— +B|—=—)—-(B- =0
a " ( pdt) (B-¥)v
Now we may combine the first two terms:

p% (%) —(E’ﬁ’)v:o (28)

Thus if the second termis zero (V' is constant along field lines) then B o p. Thisis an
example of flux freezing. We may imagine the field lines being swept dong with the flow.
We may now insert the simplified LHS back into equation 24, again neglecting the Hall

current term:
d (B
—
—(=1_(8B.
pdt ( P ) (

3.2 Magnetic pressure

<l

)V’ — 1B (29)
Ho

We may now go further to eliminate the current density from the MHD equations. We use
Maxwell’s equationsto write:

— —

B 1 —

TxB- (L) 5L [(B.9)E-v#]
Ho 210

Then the momentum equation (7) becomes:
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We may interpret the B2 /24, term as magnetic pressure, Wh|Iethe7}; (B . V) B term
is dueto field line tension. Notice that the Alfven speed is then given by v% & Prag/p,
while the ordinary fluid sound speed is given by vZ ~ Pgas/p.
We now have a consistent set of MHD equationsin p, v, and B

%_t(§-€)§—€<%+p>+p§ (20)
-
38_]?+(V.§’>§+§($.7)—(§.€)7:0 (31)

(32)

—

d
—p+ (7 . V) p=0
An equation of state linking P and p completes the set.

Using the MHD equations: Alfven waves

3.3
We may linearize this set of equations in the usud way, with v5 = 0 and ]?(; = oonstant.
Egn 32:
- X Vi
—iwp, +ik Vip=0= p, =p L (33)
Egn31:
—ZwB1+z(¥-ﬁ)Eg—z<E)~Eg)\71):O (34)
or: f . ? .
T:( '“)_5—( - °>vﬁ (35)
w w
Eqn 30:
B, - B, B,
— . — —
—iwpv = —ik | Py 4 =0 +z‘(k-B0)—1 (36)
Ho Ho
From the equation of state:
dP
1= %/)1 = UsP1 (37)
So then equation 36 becomes:
B, - B, B,
. —
—iwpvy = X vZpy + L0 4 (E) . BO) = (38)
Ko Ho

Use eguation 33 to eliminate p; :
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X.v BB B,
,iwp\ﬁ:fif vf,c v1+ L 0 +z(?]§;)_l
w Fo Ho
Now dot equations 35 and 39 with X :
k-v; BB, X - B,
— . . — .
—iwp(k v{) — ik (vf,J AZ A2 0) +i (k .BO) L
w Ho Ho
X v X - B,
—_- — -V — — . —
<8 - (A (1B - (22 (v w) o
w w
Thus the perturbation to 3 is perpendicular to k. Then equation 40 simplifies:
— —_— — — —_— —
k2 k-vi B; B k- v B:-B
(F 1) = 5 (st B e B
Ho w WPk
Gathering up terms, we have:
— k22 ?g
(% 5) (1 ) - L
w wppo
Now we can put this back into equation 39:
2 B, B, BB, B,
— e Vs P 2 D1 - Do 1 Do T o 1
_ - _K k -By)—
R (w(1k2v3/w2) wplg o ) +( 0) o
X B, - B, B,
. — —
= - 2012 /.2 : 0+(k'BO>_1
(1= k202 /w?)  pg o
Now cross equations 43 and 35 with X
k x B,
— — — X 1
—iwp(k xvi) =ik -Bg
(i xw) =i (- Bo) =
and
K xB; = L (kx 0)— : (kxﬂ’)
w w
Combining (44) and (45), we have:
K- kK x B,
— —>7 -V — — —>.—> —>.—> X 1
o )(ka0)+(k 0) (% By) Al
and using equation 42
( (¥ 1?)2
" 20 ’B, -B
(k xBy) [ 1- == (BB (k xBg) =0
\ w?ppg / w?ppg (1 — k*v3/w?)
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Now if we look at propagation along Bo, the second term iszero. Since we have already
foundthat & - B, = 0, k x B, cannot also be zero unless B, iszero, and so we have:

L (Em)

w? = ~—— = ;%2 (48)
PHo
which is the dispersion relation for Alfven waves. Aswe found in our previous discussion
of Alfven waves, these waves are transverse waves, and we can liken them to waves on
strings.

. — . . —
For propagation across B, dot equation 35 with B
% B, - B, X - B,
=5 o 1 Do 2 + Do o @ —
B, By = B: — B -
o ((lkzvg/wz) w2pu0> 0 ( w ) ( 0 vl)

. - o . .
Sincek - By = 0 inthis case,

— — k2 B(Q)
B:-Bo)(1- =
(B 0)( (1—k2v§/w2)w2puo) !

—_— —
If B; - By # 0,then:

L =il (49)
These are magnetosonic waves. (cf Chen egn 4-142, p 144, inthelimit ¢ > v, , and

plaswav notes egn 65)

34 MHD power generators

The MHD power generator is used to convert thermal energy to dectric energy. In this
device, a weakly ionized gas expands down achannel with amagnetic field acrossit. Its
operation may be understood using Ohm’s L aw (14):

S N SR
xB=nj— (ij—VPe)—
en
and the equation of mation (7)
oV N - SR
at+p(u V)v—pdt—ij—VP

where we have neglected gravity.

Initially the pressure gradient drives the plasma along the generator, perpendicular to
the applied magnetic ﬁeld As ¥ increases, the v x B force generaes current across the
generator. Theresulting 7 x B force opposes the pressure gradient, and a steady state flow
results. In asteady stete, the momentum equation gives:

1 dv? d
5P =T (kinetic energy density) ~ j B
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Thus the kinetic energy of the flow is converted to electric current. To extract most of the
flow energy, we want achannel of length L where

1p?
2 jB
But from Ohm’slaw:
. vB
J o~ =
n
and thus
1 pv
~op2

The device is efficient because the losses are surface eff ects (friction, heat conducted out of
the region) while the energy conversion isa volume effect.
The Hall term ﬁj X B isimportant to consider in the design of agood MHD generator.

1 - = B é’*n
—_ X B‘ = LjB = ) e e T
en enn en m

(equation 22 in diffusion2 notes, 7 is the collision time).

eB )
=MN)=——T = 1NJWcT
m

—jx B
en

Thus the Hal term in Ohm’s law is of order w.T times theresistivity term. If w.7 is not
too small, then the current flowing acrossthe channel creates, through the Hal term, a Hall
electric field £ dong the channel. The Hall electric field drivesacurrent j; = E /7
opposite v, which in itsturn causes a current oppaosite the original current. The magnitude
of this current may be estimated approximately asfollows:

1 .
FEy~=—jB = njw.T
en

Thus
jH ~ jwcT
Epz ~n(wer)’j
and therefore
./ 2 .
J=(wer)"J
When w7 is not smdl, it isimportant to prevent the Hall current from flowing.

The gas used is usually air, CO,, or argon with asmall amount of easily ionized gas
to providethe ions. This might be 0.1-1% of an alkali metal vgpor such as sodium or
potassium. Thetempertature is 2-3000 K and the field is around 1.4 T (similar to the field
in atypical loudspeaker). The magnetic reynolds number R, istypicdly < 1 inthese
devices, which means that flow dominates. Thusthe physicsismore astrophysical thanitis
like atypical fusion experiment. Fusion devices tend to have high R, .
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