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1 Introduction

Plasma is sometimes called the fourth state of matter (the first three being solid,
liquid and gas.) From basic thermodyamics, we know that adding additional
energy to a system allows it to progress through the states from solid to gas as
the average energy per particle increases. To progress from gas to plasma, we
have to ionize each of the gas particles- that is, to separate one or more electrons
from each atom. To achieve this state the plasma is typically very hot. The
ionization energy for hydrogen is 13.6 ev corresponding to a temperature

kT » 13.6 eV

or

T » 13.6 eV
1.38 £ 10¡23 J/K

1.6 £ 10¡19 J/eV

=
13.6 eV

8. 625 £ 10¡5 eV/K
= 13.6 eV £ 1. 159 4 £ 104 K/eV (1)

= 1. 6 £ 105 K

From equation (1) we see that 1 eV corresponds to a temperature of about
104K. In plasma physics, temperatures are often expressed in eV. T = 2 eV
really means kT = 2 eV.

In equilibrium, ionizations are balanced by recombinations. The recombi-
nation rate is

αneni

with the recombination coe¢cient

α = 2.5 £ 10¡13 cm3s¡1at104K

But if the plasma has a very low density it may be able to remain ionized
even at low temperatures simply because the particles cannot find each other
to recombine. Thus some plasmas, especially in astrophysical systems, are not
very hot but are very low density.
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2 The Saha Equation

The Saha equation expresses how the Boltzmann relation is applied to determine
the ionization state. Boltzman’s relation relates the relative populations of two
states that di¤er in energy:

n1

n2
=

g1

g2
exp

µ
¡¢E

kT

¶

where the g are the statistical weights (roughly the number of substates within
the state that have the same energy), ¢E is the energy di¤erence, and T is the
temperature. We compare two states: a neutral atom on one hand, and an ion
and an electron on the other.

ni

n0
=

gi

g0
exp

µ
¡χ + 1

2mv2

kT

¶

where χ is the ionization potential. The statistical weight for the ionized state,
gi, is

gi = g (ion) g (electron)

where

g (electron) = 2 £ volume of phase space around velocity ~v

volume of phase space we can distinguish

Here the 2 is the number of spin states, and the electron may have any velocity
~v. The ability to distinguish relates to the uncertainty principle. Then

g (electron) = 2
d3~xd3~p

h3

The volume of space per electron is 1/ne , where ne is the number density. Thus

dni

n0
=

gion

g0

2

ne

4πp2dp

h3
exp

µ
¡

χ + 1
2
mv2

kT

¶

and then, summing over all the possible velocities and assuming isotropy, we
have

nine

n0
=

gion

g0
2

4πm3

h3
exp

³
¡ χ

kT

´ Z 1

0

exp

µ
¡mv2

2kT

¶
v2 dv

Letting u = mv2/2kT, du = (mv/kT )dv, the integral is

p
2

µ
kT

m

¶3/2 Z 1

0

u1/2e¡udu =
p

2

µ
kT

m

¶3/2

¡(3/2)

=
p

2

µ
kT

m

¶3/2
1

2
¡ (1/2)

=

r
π

2

µ
kT

m

¶3/2

(2)
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Thus

nine

n0
=

gio n

g0
2
m3

h3
exp

³
¡ χ

kT

´ 4π3/2

p
2

µ
kT

m

¶3/2

=
gio n

g0
2
(2πmkT)

3/2

h3
exp

³
¡ χ

kT

´
(3)

This is the Saha equation.
In equation (3), the statistical weight gion is actually the sum of the statistical

weights for all the energy states of the ion. This is called the partition function,
Bi It is usually dominated by the ground state.

ni =

1X

j=1

nij =
ni1

gi1

1X

j=1

gij exp

µ
¡Eij

kT

¶
=

ni1

gi1
Bi

The Saha equation shows that temperature is the dominant factor a¤ecting
the ionization state, but density also plays an important role. We may rewrite
it as follows:

ni

n0

ne

n0
=

gio n

g0

2

n0

(2πmkT )
3/2

h3
exp

³
¡ χ

kT

´

This version shows that the ionization fraction also depends on density as
1/

p
n0. Low density systems may have high ionization at relatively low tem-

peratures.
Once ionized, the fundamental particles in the plasma (ions and electrons)

are each electrically charged. Because the electromagnetic forces are long-range
forces (/ 1/distance2), this creates interesting behaviors in which the motions
of plasma particles may be correlated over large distances- so-called "collective
behavior". Our task this semester is to study some of these behaviors.

3 Fundamental relations:

The relations governing the behavior of plasmas are:
Maxwell’s equations:

~r ¢ ~E =
ρq

ε0
=

e (ni ¡ ne)

ε0
(4)

where the second equality applies to singly-ionized plasmas. Much of our work
will involve hydrogen plasmas, for which this seond relation is true.

~r ¢ ~B = 0 (5)

~r £ ~E = ¡∂ ~B

∂t
(6)

~r £ ~B = µ0
~j ¡ µ0ε0

∂ ~E

∂t
(7)
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Newton’s law with the Lorentz force law, applied to each plasma particle, with
the appropriate mass m and charge q :

m
d~v

dt
= q

³
~E + ~v £ ~B

´
(8)

Other forces may be included, but usually the Lorentz force is dominant.
The distribution function describes the velocities of the plasma particles. In

equilibrium, the distribution function is a Maxwellian:

f (~r, ~v, t) = n (~r,t)
³ m

2πkT

´3/2

exp

µ
¡1

2

mv2

kT

¶
(9)

where n (~r, t) is the density of plasma particles as a function of position and
time. This distribution is isotropic: there is no dependence on the direction of
the particle velocities. More generally, the distribution of velocities may also
depend on the direction of the velocity as well as on space and time.

This system of equations is inherently non-linear, so we frequently find it
necessary to approximate in order to solve the set of equations. We’ll look at
several di¤erent techniques during the course.

The number density of particles is

n (~r, t) =

Z
f (~r, ~v, t)d3~v

The Maxwellian (9) has been normalized:
Z 1

0

³ m

2πkT

´3/2

exp

µ
¡1

2

mv2

kT

¶
4πv2dv = 1

The current density is

~j = Ze

Z
fi (r,~vi , t)~vi d3~vi ¡ e

Z
fe (r, ~ve , t)~ve d3~ve (10)

If the plasma is "cold" (T ! 0, or every particle has the same velocity), this
expression may be simplified:

~j = Zeni~vi ¡ ene~ve (11)

If the distribution function is Maxwellian, the average energy per particle is

< E > =

R
1
2mv2f (v)d3vR

f (v)d3v
=

3

2
kT

or the usual "one half kT per degree of freedom". The corresponding rms speed
is

p
< v2 > =

r
3kT

m
= 1.7

r
kT

m
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The most probable speed vp is the speed at which the distribution function is
maximum. To evaluate this, remember that

d3v = 4πv2 dv

and so we need to solve

d

dv

·
v2 exp

µ
¡1

2

mv2

kT

¶¸
= 0

or

2v exp

µ
¡1

2

mv2

kT

¶
+ v2

³
¡mv

kT

´
exp

µ
¡1

2

mv2

kT

¶
= 0

vp =

r
2kT

m
= 1.4

r
kT

m
The average speed is

< v > =

R
vf (v) d3vR
f (v)d3v

=

R
v3 exp

³
¡ 1

2
mv2

kT

´
dv

R
v2 exp

¡
¡ 1

2
mv2

kT

¢
dv

Letting u = mv2/2kT, du = (mv/kT )dv, the numerator is

2

µ
kT

m

¶2 Z 1

0

ue¡udu = 2

µ
kT

m

¶2 ·
¡ue¡u

¯̄1
0

+

Z 1

0

e¡udu

¸

= 2

µ
kT

m

¶2

while the denominator is given by (2). Thus

< v > = 2

µ
kT

m

¶2

/

r
π

2

µ
kT

m

¶3/2

= 2

s
2

π

µ
kT

m

¶

= 1.6

r
kT

m

Note that
vp < < v > <

p
< v2 >

Now we’re ready to explore some of the properties of plasmas.

4 Assumptions:

We almost always assume that the plasma is quasi-neutral. This means that
when we average over a large volume of space, the system is electrically neutral.
This is reasonable if the plasma was formed by ionizing a neutral gas. We
also need enough particles in the system for it to be reasonable to compute
the average behavior, rather than focussing on the motion of the individual
particles. We’ll see how to specify these constraints in terms of the plasma
properties of density and temperature.
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