Green’s function for the wave equation

Non-relativistic case

1 The wave equations

In the Lorentz Gauge, the wave equations for the potentialsin Lorentz Gauge and
Gaussian units are: .
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The Gauge conditionis:
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2 The Green’s function

For both potentialswe have awave equation of the form
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where ® can be either the scalar potential or a cartesian component of A. The corresponding
Green’sfunction problem is:

Vio— = —47 (source)
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where the source isnow aunit event located at # = 7’ and happening at ¢t = ¢'. To solvethis
equation we first Fourier transform in time:
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Solet G (Z,w; &, t') = g (Z, &) €' /v/2r and then g satisfies the equation
(V> + k) g= —4ns (7 — &)

Now in free space without boundaries, g must be afunction only of R = |Z — #’| and must
posess spherical symmetry about the source point. Thusin spherical coordinates, we can

write:
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For R # 0, theright hand side is zero. Then the function Rg satisfies the exponential
equation, and the solution is:

Rg — AeikR+ Be—ikR
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Near the origin, where the delta-function contributes, the second term on the LHS is
negligible compared with the first, and the eequation becomes:
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and we know that this has sol ution )
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This is consistent with equation 5 provided that
A+ B=1
(You should convince yourself that thissolution is correct by differentiating and stuffing

back into equation 4.)
Thuswe have the solution
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Now we do theinverse transform:
1 [ 1 . , o
Gz, t;7,t) = ——/ —— (Ac'*B 4 Be IR Wl o m g,
( ) V2 J oo \/QWR( )

= %/_OO Aexp(iw (R/c+t' —t))+ Bexp (iw (—R/c+ t' —t)) dw
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The second term is usually rejected because it predicts aresponse to an event occurring in
the future. However, Feynman and Wheeler have proposed atheory in which both terms are
kept. They show that this theory can be consistent with observed causality provided that the
universe is perfectly absorbing in the infinite future Thetimet — R/c that appears in the
first termis called the retarded time t .

The symmetry of this Green’s functionis:
G & tat) =G, ;% ~t)
(See Morse and Feshbach Ch 7 pg 834-835). Causality requires:
G (&, —o0;2,t')=0
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and
G (Z,t;2,t')= 0fort < ¢

3 The potentials

Now that we have the Green’s function, we can solve our original equations.
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in Lorentz Gauge, and similarly:
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Notice that these equations have the same form asthe static potentials (equations 1.17 and
5.32 in Jackson).

4 Radiation from a moving point charge (non-relativistic
case)

41 The Lienard-Wiechert potentials

Our source is a point charge moving with velocity o'(t) . Then the charge and current
densities are

and

Then from equation 7, we have:
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We do the integral over the spatial coordinates first.
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where R (t') = | — 7 (¢')|. Now to do thet’ integral, we must reexpress the delta-function.
Recall:
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where f (z;) = 0. In thiscase:
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and, since v = df/dt,
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The function f is zero whent’ = ¢, = ¢t — R /c. Thus, evaluating the integrd,, we get:
O (7,1) = # (10)
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And similarly
A(#t) = ——t— (11)
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These are the Lienhard-Wiechert potentials. It is convenient to use the shorthand
r,UR(1”'R>R”'R (12)
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4.2  Calculating the fields
In Lorentz Gauge, the fields are found using
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But our expressions for the potentialsarein terms of & and ¢, hot & and ¢, so we have to
be very careful in taking the partial derivatives. We can put the origin at the instantaneous
position of the charge to simplify things. Then R = r. Our potential may be written:
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Thus the r —component of V& must be modified:

0P ov 1 0¥
— = — —— (13)
or const t or const tret ¢ atra
Now we can calcul ate the fields:
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We can choose our axes with polar axis along the instantaneous direction of 7. Then
7+ ¥ =rvcosf, and
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In the non-relativistic limit, v/c < 1, to zeroth order in v /c, thisis

Vry = 7
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and again taking the non-relativistic limit, this becomes:
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The first term isthe usual Coulomb field. The other two termsdepend on a : these arethe
radiation field.
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4.3 Radiated power

The Poynting vector is
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Thus the power radiated per unit solid angleis:
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Thus is the L armor formula, where a = dv/dt is the acceleration and 6 is the angle between
a and n. Thetotal power radiated in the non-relativistic caseis:
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