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1 The equations of fluid dynamics

Fluid dynamics describes the behavior of liquids and gases when the mean free path for
particlesis very small compared with the other length scdes of interest in the problem. In
astrophysics, densities are often low and mfp correspondingly large, but the rdevant length
scales are also very large In addition, interactions between the particles of gas and the
magnetic field serve to reduce the mfp. Thus in most astrophysical situationswe may safely
use the fluid equationsto describe the motion of matter.

1.1  The continuity equation

The density in aregion isdueto flow of matter into or out of that region. Thus:
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Using the divergence theorem, we may write thisrelation as:
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Since thisrelation must be true for any volume V, we may conclude:
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Expanding the divergence, we get:
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is the Lagrangian derivaive, the rate of change as seen by an observer moving with the fluid.
This is often the best derivative to use since it refers to fixed particles, as Newton’s law do.



1.2 The equation of motion

We apply Newton’s 2nd law, F = md to afluid “partide” of mass pdV. Theforces acting
on the particle are pressure forces and gravity. Thus:
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Here we have ignored the effect of magnetic fields, which can be very important in
astrophysics. (T hese eff ects are studied in Physics 712.) We can expand out the Lagrangian

derivative to get:
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1.3  The energy equation

+pT-VE=—VP+pj ()

So far we have two equations (one vector, one scalar) for the varaiables v, p, and P. So we
need another equation. (We also need g. This may be specified independent of the fiuid
under consideration, or it may be derived from Poisson’s equation in the case of self gravity.
) Thethirdfluid equation is the energy equation. Sometimeswe can use a short cut by using
an equation of state:

P =nkT (6)
for anideal gasat constant temperature, or
P=Kp @)

for an adiabatic process. When neither idealization is valid we need to use thefirst law of
thermodynamics:

dAU=Q —-W
We apply this to the specific internal energy (energy per particle) Uspecific = ST with T
and A representing the heating and cooling rates (per unit volume) for thefluid. Then the
first law of thermodynamics may be written:
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SettingI" — A = 0, we retrieve the adiabatic equation of statewith v = 5/3 for standard
astrophysical situationswhere the fluid isamonaomic gas. (The situation could be different
in molecular clouds, however.)

Note that we have neglected thermal conductivity in thisderivation.

2 Applications of the fluid eqlzgations



2.1  The virial theorem

The virial theorem applies to a system enclosed within a surface S. Take the momentum
equation and dot with the position vector 7 :

—
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Integrate over the volume V' containing the system. Consider first the steady state case, so
that the first term with the time derivative iszero. Then the orther terms are:
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is the kinetic energy of the system.

On the other side of the equation we have
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So the volume-integrated equation of mationiis:
2T + 311 + W + surfaceintregrals = 0

If the system isfinite, then we can put the surface outside the system and thus ensure that the
surfaceintegralsare all zero. Then we have the steady state virial theorem:

2T +3ll+ W =0=2I"+2U+ W (10)
Notethat T" is always positive, asisII. Thus W is negative and is necessary for the system



to be in asteady state. Thisis agravity-bounded system. Writing the kinetic plusinternal
energy of thesystemas &/ = 1"+ U, equation 10 becomes:
2E+W =0
or
LW

2
whichis often the most useful form of the virial theorem.
W isrelated to the gravitational energy Q = £ [ p®dV for the system:
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To seethis, we start with the answer and work backwards:
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Now we use Poisson’s equation, 0;g; = —4nG p, and simplify:
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The remaining volume integral is zero because the integrand is an antisymmetric tensor
times a symmetric tensor, and is thusidentically zero.

The surface integral terms are often zero. For abounded system, weknow that ® ~ 1/R
at large distances, and similarly g ~ 1/R?. Thus g>R ~ 1/R?, which goes to zero faster
than the surface area goes to infinity (as R?). Thus the whole integrd goes to zero as
R — oo. In fact for any spherically symmetric system, the surface terms sum to zero. For
then the surface S isa sphere of radius a, §= — g ,® (a) = —GM (a) /a = g (a) a, and S0

Pt 2o ) gGetra? (Lo 8, 2
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In such casesW = ). For asystemof mass M and radius R, Q ~ —M?/R. For example,
for aspherical systemwith p = p,R/r, we have

M((r) = /0 p (r)4rridr = 477,00R/ rdr = 277/)037,2
0
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Q is negative, as expected.

2.1.1 Example: a slowly contracting star

If the star constractsvery slowly, then T' =~ 0,and so the virial theorem reducesto;
Q=-2U

As the star contracts, |Q| o« M?/Rincreases, so the internd energy U = £ || increases

also. Thus the star heats up. Notice that to remain in equilibrium, only half of the

gravitational energy released is converted to thermal energy: the other half must be radiated
avay.

2.1.2 Example: a spherical interstellar cloud

The cloud is embedded in the surrounding medium, so we cannot ignore all the surface
terms. However, if the cloud is spherical, the gravitationd surface terms sumto zero, and if
v = 0 at the surface, then only the pressure term remains. So:

2(T+U)+Q:/PF-ﬁdS:47ra3P(a) (11)
S

This system can be pressure bounded evenif —€) issmall. Notice that 47a® = 3V, and
2U = 311 = 3 [ PdV, so equation 11 becomes:

2T + Q+3/(P—P(a))dV:0
If thekineticenergy T ~ 0, and 2 ~ 0, the pressure at the surface must be:
P(a):%/PdV:<P>

the average pressure inside the cloud. If gravity is negligible, there can be no pressure
gradients. pressureis constant inside the cloud.

Magnetic fields can be included in this andysis. Magnetic field inside the cloud always
tendsto expand the cloud, but external fields can help to confine the doud.

2.1.3 Example: stellar systems

The virial theorem is traditionally applied to stellar systems such as dusters of galaxiesor
gobular clusters. For such systems, which are ’pressureless’, U = 0 but 7" # 0. Thevirid
theorem becomes:

2T+Q =0
Thus by measuring the system’skinetic energy 7', we can measure its mass (through Q).



2.2 The linearized equations

The fluid equations are, in general, non-linear (see, for example, the p (17' 6) U termsin
equation 5). Thismeans that the solutions are interesting and complex, but also difficult to
find. In many cases the fluid has a steady equilibrium state (9/9t = 0) and we can look for
small perturbationsto that state. We shall label the steady state variables with a substcript O
and the perturbed quantities with the subscript 1. Then we have:

Equation 2:
0 (pg + - = oS
QLB 4 iy 50) - 9 o + 1) (o0 + 1) F- (50 +70) = 0
Use the fact that dp, /9t = 0 and ignore products of two perturbed quartities:
9p;

—7 00 Npg 70 Vpu 5 Voo +pV T+ poV B+ 1V g = 0

The underlined terms cancel: this isthe equation describing the original steady state. Thus
we aeleft with:
9p;

E+170'6P1+771'600+P06'771+P16'170:0 (12)

Now we do the same thing with the momentum equation (5):
0 (Y + %)

oy +(py + p1) (Vo +01)-V (o + T1) = =V (P + P1)+(py + p1) (Jo + §1)

(po +p1)
Linearize:
PQ% + Py (770 ﬁ) +p, (771 : 6) U+ py (170 V_') o = —VP1+ pyd1+ pdo (13)
Before we perturb the energy equation, let’slook at some examples.
2.2.1 Special case: uniform, static equilibrium state with g = 0

With vy = 0 and gradients of all equilibrium quantities zero, equations 12 and 13 reduce
to:

D1y G =0 (14)
ot
and o5
v -
po—=-VP (15)

Now we look for a solution in which all the perturbed quantities are proportional to
exp (zE - iwt) Equations 14 and 15 become

—iwp, +ipgk - 71 =0 (16)
and .
7’L.wp0’l_)'1 = 7’L.kP1 (17)
Now we add the linearized version of the adiabatic equation of state 7:

dP

-1 Py —1
Pr="m0 = vKpipy = nglpg

P
= v=2p; (18)
Po
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Combining equations 16, 17 and 18, we get:
. [ —ikP
—iwp, +ipyk - ( z 1) =0
—wWp,
7P
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_wp1+,g.<

Now this equation can be satisifed with anon-zero perturbation p, only if:
w? —k*y— =0

or

So we have sound waves with speed v;’jﬂ.
0

2.2.2 The Jeans instability.

Now we take g7 # 0, but keep p, constant and 7, = 0. Thus we still have equation 14, but

the momentum equation becomes:
Po% = -VP + pydi
We find g7 from Poisson’s equation:
V20, = -V - § = 47Gp,
Again we assume the wave form for all the perturbed quantities.
—ik- g1 = 47Gp,
and —
. —iwpyU1 = —tk Py + po g1
We dot equation 21 with &, and use equations 20, 16 and 18:
fiwpolz Y = —ik*P + pOE- g1

P, 47G
= —ikgvp—opl + pp—2
0
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Again we want a solution with anon-zero i - v1, and thisis only possible if

P,
w? = kQ’y—O — podnG
Po
P,
= = (¥ - k)
Po
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(20)
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(22)



where

k5 = ()
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Thus the frequency isreal (the perturbaion oscillaes) if £ > k&, but w isimaginary (the
perturbation grows) if k& < k; or equivalently, the wavelength of the perturbation X is greater

than the Jeans wavel ength

_2m YPo/po [Ty Po/pg
Ay = =27 =
kg 471G py Gpy
We can also express thisin terms of the minimum mass of the perturbation:

3
M, Npo)\i = (ﬂ) i
poG Po
When the wavdength is short, the increased pressure in the compressed regions is aleto
overcome the increased gravitational atraction, and the system oscillates. But for large
wavelengths, the increased density causes sufficient gravitational attraction to overcome the
pressure forces, and the system coll gpses.
Thisresult isgenerdly interpreted to mean that an interstellar d oud needs to have a mass
greater than M ; in order to collapse. Thelimiting mass may be expressed in terms of the
cloud temperature, density, and mean molecular weight 1 as:
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whichislarge! Cold, dense clouds collapse the most easily. For a temperaure of 20K, a
mean mol ecul ar weight of 2 (molecular hydrogen) and adensity of 1000 cm—2, wefind the
minimum mass for collapse to be

0.23/2
22 (1000)
However these parameters are not typical of acloud beforeit collapses.

Notice that Jean’s original analysis, as presented here, has a serious flaw: theinitial
equilibrium is not an equilibrium! We cannot have a cloud with uniform p, and P, since
it will not have g, = 0, and without pressure gradients it will collapse! However, the
calculation does give the salient features of a more accurate (and complicated!) cal culation,
which leads to a critcal mass about \/§ti mes larger than we found here. (See Spitzer for
details.)

My ~2x10° Mo = 4.5 Mg



2.2.3 Thermal instability

This instability arises because, in generd, heating processes are proportional to n while
cooling processes go like n2. When asystem is perturned from equilibrium, heating and
calling no longer balance. In particular, if 6n > 0, cooling increases faster than heating, T’
and hence P arereduced, and the density increasesyet more.

To investigate thisinstability, we consider the energy equation in the form (equation 8):

D /3 Dn
— (=kT ) =T - A+ kT—
"Dt (2 ) MY
Inequilibrium, ' = A. Let
Fr-A=-nf(n,T)
where £ is the net energy loss rate, and
£ (7’L0, T()) = 0 (24)

Now we perturb, to get

(no +n1) <i+ﬁ- 6) (%k(TO +T1)> —k (To +Ty) <ﬁ +6-€> (no + n1)
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Setting ¥y = 0, and assuming all perturbed quantitiesgo like exp (zE ST — iwt) , we have
ng <% + 7 - ﬁ) (%kﬂ) —kTy <% + 9 - 6) ny=—(no+mn1) [.f (no, To) + %nl + %Tl
Now linearize, and use equation 24 to get:
ng (—iw) <%k}T1> — kT (—iw)ny = —ng {%nl + %Tl}
Next we use the perturbed ideal gas equdion of stateto rdate P; ton1 and 77 :
Py =nikpTy + nokpTy (25)
Substituting this into equation 22, we have:
—iwpol; -0 = —ik? (n1kpTo + nokpTh) + pOE -G
Again we have dotted with & so we can use equation 20
i 47Gpy

g = — = idrGp,
—1

So

fz'wpok . 171 = 77;]'{12 (nlkBTO + nok'BTl) + i47TGp0p1
and, as before, the continuity equation 10 gives:
_ POE U1

P11 =
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and finally the energy equation gives
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*Z.’/L()w <§kBT1) + n()_Tl = *Z']{?BT()UJnl — nga—nl
n

oT
So
T —% — iw—“knT
| =N
'g‘zé' — g'lka
Now write
20£ 1 1

kp == ~
r 30T kgc,  cooling length

where theisothermd sound speed is
(kT
cg = ) =2=2
m

and the ”cooling length” = sound speed times (cooling time at constant density). Similarly,
we define

2ngd£/0n
ky==—7t—
3 ]{IT()CS
and then
Ty ny [(—kpcs — Fiw
Ty,  ng krcs — iw
B k-, <—kpcs - qiw>
a w krcs —iw

Now putting this into the momentum equation 26, and cancelling the factor k- v, tha
appears in each term, we have:

kpT, 1 (—kyc, — 2iw 4G p?
Ciwpy = —ik? (p—O—B 0+n0kBTo—< L )>+z L
w m w krcs —iw w
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Then we introduce k; (equation 23 with v = 1),to get

2.
wQZkQCf (1+ —kpcs—gzw> 7}{3 2

kres —iw
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whichis, in general, a messy cubic equation for w.

2
(W = (K = k) &) (kres —iw) = k°C <—kpcs - gzw)
2
wlkres —iw® — EPkp 4+ ic2kPw + cfk}_zjkT — icgkiw = fciszkp — giczk%]
—iw® + WPkres +ickw <§k2 - k3> — (K (kr — kp) — k3kr) = 0 (27)

First note tha setting kr and k, = 0 gives back our previous result for the Jeans
instability.
1
—gi (3w? — 2 (5k* — 3k7)) w=10

which has solutions w = 0 (which is aspuriousroot here) and

5 3
w = i\/:cswk:Q ——k2]
3 5

(remember that our new definition of k; differs from the old one by afactor of v = 5/3).
To get an idea of the thermal effects, let both k7 and k, < &, and expand w ina series

w=wyt+ws+- -
wherew, is 1st order in kr, k, and so on. The to first order, equation 27 becomes:

5
—i3w8w1 + wﬁchs + ic?wl <§k:2 — k2J> = ci’ (k:2 (kr — k,) — k:?kT) =0

, wikres — ¢ (k% (kr — k,) — k3kr)
Twy = > = D) (28)
3&)0 — (3k' _]CJ)CS
The new result has wy = 0, and then:

—Ci (k2 (]{IT — I{Ip) — k‘%]{?T)
—EE k)
co (br (K2 — 1) — K2k,)
(L))
Remembering that our functions have time dependence exp (—iwt) , this shows that we will
have growth (iw < 0) if k < \/ng, as before, and

iwl =

kr (k* — k%) — k*k, > 0
k? (kr — k,) > krk3

kr \/E
ki | k<y\/2k
Ner -k, “PSVEY
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orif k> *5514:,, and
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2k <k <k
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Since the frequency hasno real part, thismode has pure exponential growth.
The previous Jeansresult ismodified. With:

wo = i\/écs K2 —2k%  wefind:

22 (% — 2h3) ke, — b (K (br — ky) — K3kr)
Be2 (k2 — 2k2) — (2k2 — k2) 2
 R%kr 4 K2k, k2 (2kg + 3K,)

Cs = Cg

T TE(E )

Again we have growth for £ < k; if kr and k, are positive, but alsoif £ > k; and kr or
k, is sufficiently negative. In both these caseswe have agrowing wave, sometimes called
overstability.

To seewha’s going on in these modes, ook at the first solution (pure instability) in the
casek; = 0 (i.e. gravity is not important). Then
cs (krk? — k*k,)

2
independent of k. Putting back the definitions of k£ and k,,, we have:
3 (2&5 1 2n08£/8n>

io.)1 =

3
ECS (/{IT — kp)

z'wl =

W= S\ 30T kpes 3 kToes
_ 2Ll (oL mof
’)//{JB |:8T B T() 8TL:|
Now
y-im L
kB B Cp

Y
where cp is the specific heat at constant pressure (see, eg, Lea and Burke equation 19.18),
and

oL _ 2L | Do) 0L
oT|,  9T|, 9T|p dp
_ oL +<_&>£
- T, To) Op
Thus
1 os
ZU‘H*C}D@T

Since wy = 0, accelerations are zero to 1st order, so thisis aconstant pressure perturbation.
Butif 0.£/0T at constant pressureis < 0, the the perurbation is unstable. The temperature
and density perturbations are out of phase (see equation 25 with P, = 0), soif n > 0, then

12



0T < 0. Then cold regions have

of£
= —| 6T
0£ T |, 0T >0
(both terms negative) and so cool faster. Hot regions expand and get hotter while cool
regions contract and get colder.

What about the other mode? Again with k; = 0, we have:

<2 2k + 3k 1 3
iwy = CSM = c, <EkT + Ek”)

1072
3
whichis also independent of k. Now
oL] _ oL dp| ot
arly oT|, OT|g 9p

where S isthe entropy. Now if entropy is constant (no heat flow) then P oc p?, T o p7~ 1,
andso p o« T =Y andthus

ol __1 _n
8TS ’}/—1TO
So
oL _ 0L 1 pydL
OT|g 0T\, 2/3Ty dp
and so

30T kgca 23 kpTocs
9 (8£ 3o a£>

15k 5 27T, on

iwl = —

Cs <28£ 1 32n00£/8n)
5)

8_T 2T0 on
2 0f

15kp OT |4

This mode is a sound wave, and we get instability if g—§ along an adiabat isnegative. Then
the dense parts of the wave heat up, and the wave grows.

2.3 Discontinuities

Sharp boundaries often exist where two distinct fluid phases exist in pressure equilibrium
with each other. (Processes such as thermd conductivity broaden the boundary to afinite
width.) Thereis no velocity of material across such a boundary. Pressure must balance
across the boundary or the boundary will accelerate. To seethis mathematically, integrate
the momentum equation across the boundary. Let x be a coordinate perpendicular to the

13



boundary. Then:

/xb+5 D{f rbht+e . .
p——dxr = / (—VP —pVe, ) dx
Trp—€ Dt rp—E !

/IW (~9P -V (p2,) + 2,9p) dz

Tp—€

rb+e
— (P+p®,)|27° + @, / vV pdax
Tp—€

= —(P+ pq’g)|$b+5 + @ p|$b+5

Tp—€ rh—E€
= P(zp—¢e)— P(xp+¢)
where we have used the fact that ®, changes negligibly acrossthe thin boundary. Thusto
make the |eft hand side zero (no accel eration) we need P to be the same on both sides of the
boundary.

2.3.1 Stability of contact discontinuities

Ref: p 222 Spitzer

Imagine a cold cloud in a hot surrounding medium in the galaxy. Gravity pulls the
cloud toward the galactic plane, and the mation is opposed by pressure gradients in the
surrounding inter-cloud medium. Let’s examine the stability of this situation.

We beggin by writing linearized fluid equations for the materid on both sides of the
boundary. For simplidity, we consider aplaneinterface. Asusud wechoose %, = 0, and in
the unperturbed state we have:

VP = pj
. Now I’m going to use the labels 1 and 2 to denote the two sides of the boundary, soI’ll use
aprimeto denote the small perurbation. Here g is not dueto self gravity, so it does not
change when we perturb the fiuid.

Continuity equation:

—iwp) +ip kT =0 (29)

Momentum equation: .

—iwp, U] = —ikP{ + pi§ (30)
with similar equations for medium 2. Now we add the boundary conditions. Let’schoose
a coordinate system with = running along the boundary and = upward, perpendicular to
the boundary. The boundary isat = = 0. Then § = — g2, and for each fluid v, = v,, the
boundary velocity. We can expect to find a solution with no dependence on y.

Next we look for incompressible perturbations in which there is no density change,

p’ = 0. Then equation 29 becomes:

k-t =0 (31)
Solving equation 30 for P’, we have:
Pl = —“’l’;”” (32)
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Next we dot the momentum equation with k, using 31, to get:
EP{ =0
and since we expedt P{ # 0, thenk? = 0, or
kZ+k2=0

and so either k, or k, must beimaginary. We expect the perturbations to get smdler as
we go away from the boundary, so wetake k, = ik, with solutions of the form e=*# for
z > 0andet® for z < 0. Then k, = +ix. Then we have pressure balance a the perturbed
boundary:

DP -

o = —iwP' + 1, - VP = —iwP' + v, (—pg)
So the pressure change at the perturbed boundary is

sp = p 42
W

_ welvb n vb.plg _ wp?vb n vb‘ng

K W —1iK W

Thus

pyt+p

w? (¥> = Q(PQ - P1)
K
wg — gk P2 — P1 (33)

P2+ p1
Thus w? is real (boundary is stable) if p, > p, (denser fluid on the bottom) but is unstable
W? < 0)if py < p; (denser fluid on thetop). This is the Rayleigh-Taylor instability. Note
that inthelinear regime, |w| o v/gk, and so the shortest wavel engths have the fastest growth
rates.
Thus we conclude that cold interstellar clouds should “drip” towards the galactic plane

with atimescde
b [t 1
|| pa — p1 gk

For adisk, wefind g ~ Go,where ¢ isthe surface density in the disk.
102 M 10'2 (2 x 1031 K
g ~ 0 ®2: ( g)2:71 kg/m2
7 (10 kpc) 7 (10 x 3 x 1019 m)
If 6p/p ~ 10, for a cloud of radius 1 pc thistime islessthan or of the order of
1016
~ S O m —— =3x10''s
10 (6.7 x 10~ 11 m3/kg- 8?) (71 kgym?) 2
~ 10y
whichis rather short by astronomical standards.
Additional applications include extragalactic radio sources in which the clouds of

radio-emitting plasma are decelerated by the surrounding, denser, intergal actic medium. The
instability may be important as a mechanism for driving turbulence, and hence accel eration
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of particlesin the radio source. In accreting magnetic neutron stars, the instability is
necessary to allow the incoming material to reach the neutron star surface.

2.4 Discontinuities with v normal to the boundary

2.4.1 Shock waves

Reference: Spitzer page 218
Consider a sound wave propagating through afluid. From equation 17 we have:

and from equaion 16

w w2 c2
Thus dl the fluid quantities oscillate in phase.  However, the sound speed is

v P
Cs = 4| =—
p

and as the wave grows, the sound speed does not remain constant:

\/V(P—HSP) \/fyP(l—f—éP P)
cs +0cs = =
p+op p(1+6p/p)

_ (HE‘S_P) <1l5_ﬂ)
-G 2 P 2 )

= ¢st=cs(y—1)—

Since v > 1 always, the sound speed in the compressed part of the waveis higher than in
therarified part. The wave startsto stegpen, and ultimately ”breaks”’. Thisisashock wave.
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After atimet, the crest of the wave has advanced by a distance

-1
or = técs:cst’y 2L
2 p
ty—19
\La=1dp
T 2 »p

The steepening is noticeable when §z ~ A/2, or when

dp
t~(y—1) 5 T

where T is thewave period. Thistime can become quite short as dp/p approaches 1.

Viscosity beginsto get important when the velocity shear becomeslarge Viscosity acts
to stabilize the steepened wave front into a zone whose thickness is of order the collisional
mean free path. Usually thisissmal compared to other scales of interest in the problem, so
we shall ignore this thickness and regard the shock as a sharp discontinuity.

The shock usually travel sthrough the fluid in the ”lab” frame. Theandysisis easiest if
we work in the frame moving with the shock. In thisframe, the fluid properties are

upstream shock downstream
Py, py | Py, py
— G | —— Ty
We also assume a steady state, and take g = 0. Then the fluid equationsfor a plane shock
are:
Continuity (equation1):

S d
V- (po) = 0= =—(pv) (34)
and momentum (equation 5)
P (17- 6) 7 = -VP
dv dP
pvdx + de 0 (35)
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and the energy equation (8)
D /3 I'-A kT Dn P Dn
Di (5’”) N AT
We can also write an equation for the specific entropy of the gas, since dS = @ /T and thus
DS ds 1dQ 1
Dt ' Ta Tt (37
The expression for the specific entropy S (entropy per particle)is S = (k/m)In (T3/2/p)
The goal is to write all these equations in conservative form, thatisintheform

(36)

divergence (something) = 0

Equation 34 is already in this form. We can put the momentum equation 35 into the right
form by adding aterm that isidentically zero:

d (ov) + dv n dP 0
) — v Y — —
T E T &
d
(' +P) = 0 (38)
Thisis Bernoulli’sequation. Now we can integrate equations 34 and 38 across the shock, to
get:
'
—_— dr =
/2 — (pv) 0
or
[pv] = prv1 — pav2 =0 (39)
and similarly:
[pv2 + P] =0 (40)
Digression on the energy equation  Let’slook at the rate of change of total energy:
o (1 o 3 kT 1, Op <qaq7 8U)
— (= S— == = S— 4= 41
&(2"”+2 m) (2”+U)at+p”at+at (41)
where U = 44L& jsthe specific internal energy. Then from equation 36
U DU (. <\, £ PDp (. =
o= o V)= nenn (1)U
£ P e —
- = V.i- (17-V) U
m.p

Now we use equations 1, 5 to simplify the RHS of equation 41:

' p p
- o [ v? £ Po
= —<—v2+U>V(pv)—pv (V(%)-ﬁ-—VP-&-VU)—p(E—i—?V 17)



e (el E) )
- (ol on) (2

where H is the enthalpy. This is the conservative form that we want. We can write the
radiative loss term p (£) = V - F' where F'istheradiative flux vector. Thusin steady state
where the total energy doesnot changein time (0/9t = 0) we can integrate across the shock

to get:
an(%vQ—%}{>} = [F]

whichreducesto

1
[5”2 +H} )] (42)
since [pv] = 0. Also note that
P P
H=U 4+ == L_
p v—1lp
Let
mU
Tcod = =

be the cooling time behind the shock front. Then the distance material travels before cooling
substantially is
Acool = V27T cool (43)
Case in which cooling is unimportant in the shock itself. This caseisdescribed by
Acool > shock thickness and other scales of interest

In this case we ignore cooling (and thejump in R, ) while analysing the shock. Define the
Mach number

_ U1 U1
a L\ JykTy/m
Then from equation 39:
Vg = &v = ﬂMq
P2 2

and from equation 40
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Now diminatethev’s:
2
P c2
’y <p—1Mc1> Lpg
P2 Py py v
2
Pyp, 1
L2 (&M) L Bpl
P1 \ \P2 Prpyy

P12, 12
P2 Py

~ M? <1 - ﬂ)
P2

gl

Next we work on equation 42:

v (@)

~—2
M2 (1 _% )

M? 4=
0
yM? +1
L,
Py
1 P
_U§++_1
2 y—1p
1 2
M+ j1ﬂ
Y Y
2
M?¢2 4 —
v—1
2 (Lo

v—1

(

P1p2

YM? (1 *ﬁ_l)

(P (1+77)

and so

20

pP-1

(1 +ﬁ‘1) - =

2 (prp-)

v—1

)

Now divide equation 45 by equation 44, and write p,/p, = 7, and P,/ P, = P. Then

= (=)

(44)

(45)

(46)



Now substitute back into equation 44 to get:

=l >
1 1- ( _1>p
7M2(1:> = %71
g P oh
~ =2 - s Q. =
AP (p— 1) s A (7—1))
~ - ~ _ _qtl
P L Oy
1 1 ~
oy -\t +1)7
o B ki
O sy
L2 (0-p)
I .= 2
P55 D
and so
1
M (L - ~> =91}
v—1 vy—1
and therefore
1
()
p = S
P + M?
_ 'y+i 1 (47)
— 2
7 (1+ Mg(v*l))
So for large valuesof M (M2 > 2/ (y—1) =3)
v pp okl
_———= =4
V2 P -1
where the numericd valueisfor v = 5/3. Finaly, from equation 46:
— 2 _ adl g2 (atl
P - y—1 +M (’Y—l)M (7—1)
atl) . odl (2
Mz (771) (v=1) (7*1 +M2)
2(y = 1)+ M2 [(y = 1)" = (y +1)?]
a —2(v+1)
o 2(y—=1) =4y M?
a ~2(v+1)
2yM? — (y — 1
= (48)

v+ 1
Thus while theincrease in density across a shock remains bounded, the pressure increase
can be large if M islarge. Equations 47 and 48 are the Rankine-Hugoniot relations for the
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shock. From these relations we can also obtain an equation for the temperature jump:

Bo_ Papy mMoon (FEar)
T e )
(M2 —(y—1)) 2+ (y — 1) M?)
a M2 (y+1)?
L EME(y=1) =2y +2 - M2 (12 +1 - 67))
a M2 (y +1)?
_ 20M -1 (1) - M2 (y2 -6y +1) (49)
M2 (y+ 1)°
which becomesfor large M
E_}Q’Y(’Y*i)]\ﬁ:ijwz (50)
T (v+1) 16

The value of M By the second law of thermodynamics, the entropy must increase across
the shock. Since S oc In (7%/2/p) , then T3/2/p oc P3/2/p>/2 must increase, and so

(@)
Pl P1

29M? — (y — 1) (M2 (';—ii)\7
v+ 1 \%1—1-]\/12/

Thus

Set v = 5/3. Then we need

10]\12_2 - <A12 (§)>5/3
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N
(631

N

=
- o1
[P BT I R

o
o

06 \OS8 1 12 14

o
o
I

Solid = LHS, Dashed = RHS. Bothsides=1a M = 1.

Thuswe find that we need M > 1 for avalid solution.

A shock wave can only occur when material gpproaches the shock at greater than the
sound speed. In the shock, callisions between particles convert directed kinetic energy of
fluid flow into random kinetic energy of thermal motion.

Cooling shocks When \yq isnot very large, the structure of the shock looks like:

We can compute the jump conditions across the entire shock plus cooling region, if we
pick x5 where the temperature has returned to its pre-shodk value. The previous energy
equation is replaced by the ideal gaslaw at constant temperaure 7. The sound speed is
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& = kT /m = P/pandisthesamein stae 1 and state 2. Then equation 40 becomes:
o1 (03 +¢2) = py (03 + ¢2)

So:
2
B eet) = (o (2) 42
P2 P2
So
M?+1 M?
— = — +1
p 7
pr—(M*+1)p+M> = 0
and the solution is:
- MPH+1£VMI42M2 41 —4M?
po= 2
M2+ 14+ (M2 -1)
B 2
With the minus sign we would get p = 1, (no shock) so the corredt solution is:
~_ M2

Thus the density increase can be very large when cooling occurs.

2.4.2 Supernovae

References. Spitzer, pg 255

Review artide by Chevalier, ARAA 15, 175, 1977

Detail s of the initial supernovaexplosion are not wel known, since we only see them
after the explosion, and usually not immediately after. We expect a blast of radiation and
gjection of some material at high energy. Sincethis materid is moving & v > sound speed
of surrounding materid, ashock is formed.

Phase I. Shock velocity isapproximately constant. The temperature behind the shock
can be found from the Rankine-Hogoniot relaions, specificdly equation 49 or 50:

5 5 2
T2 = _M2T1 = = 21
16 16 vk/m
3 ,m
T T60'%

Thus by measuring 75, we can determine v;. The temperature isusually determined from
X-ray measurements. Typical kinetic energy of asupernovais estimated to be approximately
4 x 10°° erg, and the mass of the g ecta Mj ~ 0.25 M, for aType | supernova (the numbers
are rather uncertain). Thus we find

2F 2 (4 x 10° er
E——Mv :>v~\/ \/ (4 x 107 erg) =10° cm/s = 10* km/s

0.25 x 2x 1033 g



and thus
1.7x 10724 g

1.4 x 10~ 16 erg/K
For aTypell, E ~ 10°! erg, Mg ~ 5 Mo, 00 ~ |/ 2R — 4.5 x 10° knvs and
T~ 4 x 10°K.

This phase lasts until the matter swept up by the outward moving shock is of the same
order asthe gjected mass. At thispoint the shock begins to decelerate. This happens when

Ty ~ 1361018 (cm/s)® ( > =2x10° K

4 .
gﬂ'?“gpl = My

So for aType |, and for surrounding ISM density of 1 cm=3,

3x0.25x2x10%¢g
s n~v
4r (1.7 x 10-24 g/am?)

The time to reach thisradius at v ~ 10° cm/sis
t~4x10°s~ 130y

) =4x10"%cm ~ 1pc

whichis very short!

The Sedov phase The following phase is called the Sedov phase. We shall neglect
radiation losses, which we can show a posteriori are small. Then the energy behind the
shock wave equalsthe initial supernovaenergy, and thus the energy density is

3
4y
The mean pressureinsideis
P =nkT = zu = E
3 2mr3

The pressure right behind the shock is some numerical factor of order 1 times this mean
pressure. (Numerical simulations typically find this numerical factor to be aout 2.) Thus,
from equation 48 for large M :

) 5 v KIhn 3
P= = M2P; = et L1 2
2 =7 1 4fykT1/mp1 ™ e
So
3 E
2002 =
4 27r3
and thus L2
dr 2 F 3
=== == —3/2 51
YT (3 7rp1> Te (51)

We can integrate this equation to get:

1/2
250 _ (2E),
5 s 3'/Tp1
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or

9 B\ /5 5 2/5
c o= (2E)(B) e 52
e =) G) =

= (8 x 10" cm) 2/° (53)
or, expressing ¢ in years:
re = (8 x10'7em) £2/° = (0.27 pe) 3/

where we used the numbers for atype | supernova, and an | SM density of 1 cm~3. Notice
that s hasa very small dependence (1/5 power) on both £ and p,. The temperature behind
the shock decreases with time:

dr, 2
v === = (8 x 10" cm) =t %7

dt
and thus
3 mov? 3 m 2 4
T _ - [ 1 14 _t—6/5
2 o %~ ToE (X 10tem) o

— 11,—-6/5
= 2.3 x10M,"

Remember thisisvalid for ¢ = 130 yr. Equivalently, we can find T" as afunction of the
shock radius:

T3

I -3
2.3 10" (/%) " =2.3x 10" ( — >

0.27 pc
-3
4.5 % 107 <L>
1pc

The temperature increases toward the interior because the Mach number of the shock was
higher as it passed through that material. Numerical calculations give T' ~ =43, in fair
agreement with thisestimate The same simple arguments suggest a constant density in the
interior since p, = 4p, for strong shock. But that would lead to strong pressure gradients,
which would change the density distribution. If the pressurein the interior were constant,
then we would have to have p o r3 (highest density right behind the shock). In fact the
density increases more steeply than this, because the pressure is actually greatest right
behind the shock.

We have observational evidence supporting this picture: both x-ray and radio maps tend
to show SNR asshells, with the emission concentrated in athin circular region on the sky. If
the emission comes from aspherical shell of radius r and thickness Ar, then we see emission
from aregion of length £ ~ 2r sin# wherecos ~ (r — Ar) /r =1 — Ar/r = 1—6%/2,
S0 6 ~ \jQAr/r and ( ~ 2r\/2Ar/r = 23/2r Ar o /2. Thusthe emission measure

2 1/2 5.5
n20 ~ rSp1 /2 80

avery strong dependenceon r.

Isothermal phase. As expansion continuesand 7' drops, line emission becomes more
important as theionization state decreases. The amount of energy radiated avay becomes
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significant. For T < 10° K, colling dominates the SNR evol ution.

I's

-3
4.5 x 10° (1—pc> <100 forr, > (4.5 x 10%)"/°

pc =17 pc

In this phase we can consider the shock to be isothermal. The compression is very high,
and the velocity behind the shock is very low. Thus a thin, dense, shell moves outward.
The thickness of the shell is A\ (equation 43). The shock isno longer driven by internal
pressure, but merely conserves momentum. Thus this phase is also called the snowplow
phase. By now the massinside the shell ismostly swept-up interstellar medium:

4 3
M ~ §7Trs P1

and so momentum conservation gives:

4 5 drg
—wrﬁm% = M;v; = constant

3
and thus:
4 rﬁ
E’ﬂ'pl_ = Mt'l)tt
1/4
ry = <M> t1/4 (54)
TPy

In the find phase, theinterior cools adiabatically and
TV~ ! = constant

T (1"3)_2/3 =72
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When the heated gas interior to the shell pushes the shell outward, (alight fluid pushing
on aheavier one) the shell becomes Rayleigh-Taylor unstable (section 2.3.1). In addition
the shell isthermally unstable (section 2.2.3). Both effects cause the shell to break up into
clumps.

Effects of supernovae

1. Heating of the ISM. Asthe shock wave sweeps up the ISM it also heats it.

e Shocksmay overlap to form tunnels” of hot gas that may occupy as much as 30% of the
volume of the spiral armsin agalaxy (Seeeg Smith, Ap J211 p 404)

e Conduction may evaporate cold clouds into the hot, ”tunnel” region. (McKee and
Ostriker, 1975)

e X-raysand casmic raysfrom supernovae can heat and ionize gas at |arge distances from
the supernova itself. (Salpeter, 1976, Leaand Silk 1974)

e Heating by Supernovae may lead to the formation of galactic winds that blow ISM into
the intergalactic space (Mathews and Baker 1971 Ap J170 241)

e Supernovae lead to fast-moving cloudswhaose energy is ultimately dissipated asheat in
theISM.

2Relativistic particles: Partides generated in the SN itself are trapped in the remnant,
because streaming particles generae plasma waves that scatter the partides. Particles
thus suffer adiabatic expansion losses. Acceleration in or behind the shock wave has
been discussed but remains controversial.

Radio properties: Radio observations show 3 classes of SN remnants:
1. Shellswith tangential magnetic field (compressed interstellar fiel d?)

2. Shellswith radial magnetic field (stretched out stellar fiel d?)

3. Plerions- filled remnants. Theseare usually assumed to be powered by a pulsar that
gjectsrdativistic partides into theremnant. The proptypical plerion isthe Crab Nebula.

2.4.3 Ionization fronts

Ref erence Spitzer page 246. Also Shu

Regions of ionized gas (HII regions) form around a source of ionizing radiation. The
classical HII region ispowered by a bright, young star (O or B type) that is hot enough to
produce a substantid amount of its radiation in the UV. Such stars have short lifetimes
(107years or so), so an Hll region isatransient event.

Formation of an HII region Ref Stromgren Ap J89, 526, 1939
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A photon with hv > 13.6 eV (A < 912 A) can travel a distance 1/no in neutral gas,
where o isthe cross section for ionization of aneutral H atom.

A 3
= (6 x 107! om? <—> 55
o= ) 912 A (%)
Therefore the mean free path is
1 108 (912 A>3
— — — | — cm
no 6n A

_ L (912AN
~ T\x )P

Asradiation streams out from the star it ionizesgasinasmall region. The following photons
can travel almost unimpeded through the ”hole” created by their predecessors, and then
penetrate only asmall distance into the surrounding material. In thisway the photons ”eat”
their way out into the ISM, forming an HIl region. The regionis fully formed when all of
the flux from the star is used up reionizing those atomsthat recombine withinthe HI 1 region.

Heating goes dong with ionization, since the photon energy is hv = 13.6 eV +AE,
and the extraenergy A E of theliberaed electron ends up as thermal kinetic energy in the
HIl region. Thus the pressure inthe HII is greaer than in the HI, and the hot gas expands
outward. The expansion speed (approximately the sound speed in the hot HII) is greater
than the sound speed in the surrounding cold HI and so a shock wave forms.

In a steady state we can find the radius of the HI| region (the ”Stromgren sphere”) by
noting that all the photons emitted by the star are used to reionize the atoms that recombine

within the sphere.
Notation:
e = 2D wheren = n (HI)+n (HII)isassumed uniform in the initial undisturbed medium
a = recombination coefficient to levels above 1. o = 2.5 x 1073 em?s™! & 10* K
o = meanionization coeficient = [ o (v)I (v)dv/ [ I (v) dvwheel (v)isthe stellar spectrum
T o= optical depth = [ no (1 — ) dr
Then the rate of change of ionization is due to net i onizations minus recombinati ons:
dzx o 9
primiyec L (1 —z)—anx (56)
where
o [T 2Le),
. .. . Jiz.eev U_hV
is the photon flux above the ionization edge. Thus in a steady state we have:
l—z Aromr? (57)

x2  oDe T
whichis ahorrible equation for z. (Remember that 7 also contains x.)
Now define r¢ by the condition that the sphere be fully ionized, and ionizations equal
recombinations in the sphere:

4 .
gﬂ'rgn%z = (58)
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Then equation 57 becomes:

1— 3 2
=2 (59)
T onrse” T
Thenifr < rg, 7 < lande ™ =~ 1. Since

T:na/ (1 —az)dr
0

then, using equation 59,

d 3 2
S (1-2)= 3(/rs) 7’
dr rseT
and so
e dr = 3 <L> azzﬂ
Ts Ts
3
= 2% (—)
Ts
Now let r/rs = z. Then
de” " 9
=—x
dz
Soforr < rg,z =~ 1and
de ” 1=e"x1
~ — e Tl —2z
dz

Thus1 — z remains small until e =" becomes small, i.e. z ~ 1. In fact we need
onrge” T &

or

1—2z~
i ONry
So the thickness of theionization front is
1 1
Nz~ ——
TS onrs
and thus Ar = rsAz = 1/no, aspredicted above.
Typicd numbers for an O star ae ® ~ 108 s~1, which gives

(30 \'? 3 x 10% 57! Y 30pc ()
ST\ Tmea) T \Tmm2@2sx10-Boms ) ) 2B om?

Dynamical evolution The HIl region is not in equilibrium dynamically since the
pressure inside exceeds the pressure outside. Let’s investigate its evolution.

First, the size of the region is changing asthe ionization front eas its way out. Letr; be
the radius of theionization front a& time ¢. Then

d (4 . 4 .
E <§7rrfn) = & §7Tom2rf
rate of increasein#ofions = ionization rate - recombination rate
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Using equation 58, we have:
1 dz

_ e =1—-z

an dt

3
ﬂ - =1- e—ant
Ts

The volume grows linearly for ¢ < 1/an and asymptotically approaches the steady state
solution. Thetime scale 7 = 1/an ~ (10" y) /n isindependent of the ionization rate @.
The timescale israther short. Then

which has the solution

dri d 13 Is _93dz  anrsl—z
a w37 dt 3 22/3
Ts eft/‘r

— 61
3T (1 _e,t/7)2/3 (61)

which can exceed the speed of sound in the HII region if r; (and thus @) islarge. The gasis
essentially motionless as the front expands through it. With 7;; ~ 10* K, ¢;; ~ 10 km/s.
Then withn = 10 om~2 and r, ~7 pc (equation 60),

dr; 7x3x10¥em 1-—z

U= S IR I X 10T s sos 10 % 10° cms
for
(1—2) = 2?/%4.5x1073
z = 0.99547
r;, = 0.9985r,

i.e. the HIl region is aimost formed.

Note that the pressureinside the HII region greatly exceeds the presure outside, so the
gas expands outward into the neutral surroundings. We shdl neglect radiation pressure here,
becauseit is small compared with the difference in gas pressures. (You should verify this)

Jump conditions across the ionization front  Again we work in the frane moving with
thefront. In deriving the jump conditions across a planar shock, nothing we did depended
on the fact that the discontinuity was ashock per se, sowe get the same jump conditions
here.

HIl ionizaion front HI
anUQaTQ | p17vlaT1
P1U1 = Pyl2 (62)
and
pr (v +¢F) = pa (03 +¢3) (63)

Here ¢, isthe isothermal sound speed /T4 /m. With T} ~ 100 K

o [(138 X 10716 ergK) (100 K)
L 1.67 x 10-24 g

=9. x 10* cm/s = 0.9 km/s
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andintheHll, T, ~ 10* K, 0

[ (1.38 x 10—16 erg/K) (104 K)
2= 0.5 % 1.67 x 1024 g

These temperatures are enforced by the radiative termsin the energy equation.
Now use equation 62 to eliminate p, from equation 63:

o (04 6) = L (43 + )

=1.3%x10% cm/s = 13 km/s

then solve for vy:
2 (U12 + C%)

2
el =0
V3 o V2 + ¢35
2 2 2\ 2
v +c¢ 1
UQ:M:I:— U1+ﬁ — 4¢3 (64)
2’01 2 (%1
Real solutions exist only if the quantity inside the square root is positive:
é
v+ = > 20 (65)
U1

v%7202v1+c§ > 0
With anequassign, the quadratic v2 — 2cov; + ¢ = O hassolutions: v = co 4+ /(3 — &)
andvp = co — /(2 —¢2)

(In the plot | have multiplied ¢; by 4 for clarity.)
Thus our problem has solutions only for v; < vp orvy > vg. Since(cl/cQ)2 =
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Tl/TQ < 1,

Up = C3 —Co 1—(—
(&)

X

Q

N
7N
—

|
VR
—

|
ol —
7 N\
OIO
I
N———
%)
~
~_—

Il
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In fact for our numbers,

vp ~ %01—'30.9 km/s = 3 x 10~ 2 km/s (66)
and
vR & 2cy = 26 km/s (67)

Since pv = congtant, small v correspondsto large p. Therefore D stands for ”dense” while
R stands for rare”.

The forhidded region arises because the sound speeds areimposed by external conditions,
unlike shocks, where jump conditions determine ¢, and all values of v; > ¢; are dlowed.
Also note that

VURUD = C%
sothat vg/c; > 1 whilevp/cy < 1.

All R—typeionization frontshave v; > vg > ¢; andthusthe front moves supersonically.
Conversely, D —typefrontshave v, < vp < ¢1, and so the front moves subsonically.

Using equation 64 to solve for vy, we get

2 2 2\ 2
v] t+c 1 c
UoRV2D = _( : 1) -= <<v1 —0——1) —4c§>

4’01 4 V1
= (68)
So again one solution is subsonic in the HII region, and the other is supersonic. The solution

for vy is:
] 14 1 C1 : C1 2\* C2 2
v Py 2 L U1 il U1 J

D-type front v, < cy.
With the plussign, wefind that p, /p, is large since ¢; /v, is and the squarerootis> 0.
Thisis astrong D-type ionization front. Then

2o @) @)) )]

Since v; + ffj- > 2¢y (equation 65)




So with the strong D—type front, the flow is supersonicin the HII.
With theminus sign, p, / p, issmall. Thisisaweak D-type ionization front. By equation
68, theflow issubsonicintheHlIlI.

R-type v; > ¢ Equation 67 shows that in fact we have v, > ¢y, andaso vy > cs.
Thus

With the plussign, we have

2
2:&:1_<2> ~1
U1 p2 U1

Thisis aweak R-type front. We also have
2L &
G2 - C2 - U1
so the flow issupersonicin the HIl.

With the minussign,

Thisistheswrong R-type.

o o
so0 inthiscasetheflow is subsonicin the HII.
Summarizing, we have:
Type S|gn ’Ul/Cl ’U2/02
Weak R+ >1 > 1
Stroog R — >1 <1
Weak D — <1 <1

Strong D+ <1 >1

So we trace the evolution as follows.

Initially v; > ¢;. The frontis R—type, and we have dready noted that gas will not be
accelerated behind the front since it passes by rapidly. Soitisaweak R. But v, = dr;/dt
decreases with time ( equation 61), and so approaches vy . But v; cannot decrease below vy,
Notethat if v; = vg, then vy = co. Signals can begin to propagate up to the front (v, was
previously > c5 ) bringing news of the high pressure benind. A pressure wave catches up to
and passes through the ionization front, where it steepensinto a shock.

Now the structure looks like:
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HIl | dense, hot HI | HI
(%) | (%1 | Vo
ionization front shock wave
The front becomes weak D—type. This happens when formation of the Stromgren
sphere is essentially complete.
So how isit that material still flows through the front? Notice that the number of

particlesinside the sphere is
P

N = —m"f,n = —
an
(equation 58). Thus NV increases asn decreases, i.e. as the region expands. With a lower
particle density, there are fewer recombinations. As expansion continues, the pressure in
the interior falls and the shock weakens. The expansion slows.
The final phase To analyze this phase, assume

1. Uniform density p;; inthe HII region
2. Constant temperature T7; in the HII region

Then as the region expands, | et » bethe coordinae of a particle within theregion. The
total mass interior to r remains constant as the region expands, so

prr3 = const

Thus
1 dps; _ 73d1" o Lir
prr dt  rdt r
Right behind the front, r = r;,
1d
2o guir (69)
prr_dt T

Now from the definition of r,,(equation 58),
n3;r3 = constant

So
2 dpr _ 3 dr; _ _3& (70)

prr dt r dt Ty

Then comparing equations 69 and 70, we find
1
vrr = 5%‘
Thus the speed with which matter flowsthrough the front is
_ 1
V2 =V — Vi1 = 2111:

Now look at the jump conditions across the whol e structure (shock plus ionization front).
Neglect the small diff erence between v, and v;. Then vy = v,

35



— | | —
U2 | | Vo
Prr1 | | Pr

ionization front  shock
The jump conditions are:

Pr (Uf + C?) = P11 (”% + C?I)

p 1/ v \°
2 2 PIr s
v IS —— 1 _<—>
° " P1< 4 \err )
1
v = C%I'OH (71)

° Pr (1_p11/4p])

Now since p? 73 =const, and initially p;; = p;, Weset p;;/p; = (rio/ri)>> where ry is
aconstant that is close to r;. Then since v, ~ vg =~ v;, and p;; < p;, equation 71 gives:

Butvs > ¢y, S0

Q

dri . (Lio)**
dt cr1 ( 77 )
and integrating gives:

4 74 3/4

77"1‘ =cr;, t+ constant
or ,
4/7
i t
T (1 L Tet
Ti0 4 Ty
in the final phase, where ¢ is measured from the time at which the shock forms. The
—6/7
expansion stopswhen P;; = P;. But p;;/p; =~ (1 + -}%’-O“t) ~0.1fort =anO star’s
lifetime, and so Prr/Pr = p;;Trr/p;Tr =~ 10. Thus the expansion never stops. Instead,
ionization ceases and recombination ends the HIl region’s life.

Summary

1. Dynamical evolution of the HIl region. Rapid expansion of ionization front (weak
R-type) to r; ~ 0.999r,.

2. Formation of shock ahead of ionization front and slow expansion into surrounding
region. Front has become weak D-type.

3. Recombination

Notice that some of the UV energy (afew percent) ends up as kinetic energy of the | SM-
the star is a heat engine!

2.5 Flow under the influence of gravity: accretion and winds
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2.5.1 Supersonic flow past a gravitating object.

Recall the steady state version of the momentum equation (5):

. vP
V-VVi=—=—+g
These terms are of order:
2 2
U_ ~ C_S + o
L L

Soif v? > c2, we can ignore the pressure term to first order. Then we have:

/a2
V<%+¢g)o

or total energy (kinetic plus potential) is conserved in the flow. Thefluid flows like a set of
non-interacting particles. Each fluid “partide” followsan orbit around the object. Assume
astraight line orbit to get arough order of magnitude estimate. The partide is captured by
the body if

’02

M
?—G—<O
or "

2GM
r <

=TA
v
the accretion radius. Then the accretion rateis of order 712 po.
More accurately, each fluid particle orbits around the gravitating body. On the back

side, the orbits intersect (particles collide) and our non-interacting particle model fails. This
impliesthat in the fluid a shock forms behind the mass M.

Digression - review of orbit theory. Use polar coordinates with origin at the mass M,
and assume that the orbiting particle has much smaller mass.
Conservation of angular momentum:
do .
7*25 = { = constant = angular momentum per unit mass (72)
Conservaion of energy:

1
E = Emv2 + V (r) = constant
1 GM
= et —= (73)

2 r

where
_dre Y5

MERPTERT

and so
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So equation 73 becomes:

1(/dr\> 2\ GM E
5((3) *z) T © ()
Now make a change of variabletow = 1/r. Then r = 1/u and so
_Lldu _gdr
u dt  dt
Equation 74 becomes:
1 (du)’
;(d—?) 4Py 2GMu = 2¢
Also from equation 72,
d_td_,,d
dt  r2df de
Thus
1 2 du ’ 2,2
— — —2GMu = 2
= (Eu d@) + lFu GMu e
du 2+ . 26M e
aw) TV T TeE YT e

Now let y = u — <4%. The differential equation becomes:
dy\>  , e [(GM\?
—_ = 9= —_) =K
<d9> tr=iE e

dy

a - VE v

So

Integrating, we get:

[

0 =86y+sin! (Ki//z)

Thus

and
y = KY?sin (6 —00)
Returning to our origind variables:

2
7) sin (6 — 6p)
With a change of constant 0, = 6y — 7/2, we get

. oeeM D
"7 +ecos(0—0,) 1+ecos(d—0,)

1_G&M
- =

5+ 2

GM € ( GM
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where D = (*/GM and

_ Qi <€_2 ’ 41 = QE L ’ +1
T\ e \om “V m \em
The accretion radius Returning to our original problem, the angular momentum per

unit mass for our fluid “particle” at oo is¢ = pV, where p is the impact parameter, and
E ==<mV? Thus

= ¢<Pv2)2+1\/<2)2+1
GM P
The particle startsout & co where§ = 7, so
l+ecos(m—80,) = 0
1—€cosf, = 0= ccosf,=1

The particle reaches the axis (§ = 0) on the downstream side at a distance d from the mass

M, where
D D

1 +ecosl, 2
At this point it collides with partides orbiting in the oppasite direction, and the # component

of veocity isconverted to thermal energy in theresulting shock. Only the radial component
remains. The “particle” is captured if
1 5 GMm

—-mu?i — 0
5 muv, q
But from energy conservation:
1 9 5 GMm 1 9
-m (v +v)) — —— = =mV
2 (v +vp) d 2
1 GM 1
Emvf - Tm = m (V2 — vg)
and from angular momentum conservation:
dvg = pV

Thus the capture condition becomes:
p2
V2<1_ﬁ> <0=>d<p
or
p2v2
2GM

2GM
p<—0H-=Ra (75)

All fluid with impact parameter less than R 4 is ultimately accreted by the mass M. The

<p
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acoetion rateis:

dM 4(GM)? (GM)?
= TRAPY = Tpe VI = At

Notice that the accretion rate decreases as V' increases.

2.5.2 Subsonic accretion

Ref: Bondi MNRAS 112, 195, 1952

(76)

We study this situation by first looking at the case in which the fluid is stationary a
infinity. We also use the adiabatic equation of state, P = kp~. Then the governing equations

are:
Conservaion of mass:

dM

Tdt

and the steady state momentum equation (5) in spherical coordinates:

d <v2> 1dP
— ===+ 9
dr

= 4mpriv = accretion rate

2 p dr
where
4o
| gr —
The sound speed is:
dP
¢ ====kp""
p
0
1dP gk Tldp A (5 ) _d (e
pdr p dr dr fy—l'o Cdr \y—1

(77)

(78)

where the subscript oo denotesvalues a infinity. Then integrating the momentum equation

gives Bernoulli’s equation:

02 2 P 71

—_—4 === = = —®(r) + constant
2 71 \pe

Atinfinity,v = 0 and ® = 0, so:

2 2 y—1
M
JCRRC <L) 1 :_(p(r):G
2 y-1 Poo T
Now write the mach number 1 = v/c, and use the dimensionless radius variable
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¢ =r/(GM/c%) . Then equation 77 becomes:

dM ) p o Co GM\>
T dmpriv = 4w Oo.f I OopoocOO =
GM)?
4WAPOO(CT) (80)
where ¢ p
= §QC—Sp—M (81)
is the dimensionless accretion rate. Now use equatcixén 78 to eliminate the sound speed:

zil
2
A=¥Ci> "
Poo

Now we use this relation to eliminate p from Bernoulli’s equation (79:

102 o\ 1 o\ ] 1¢2
== 4 — — —_— —1 = _;’20
2 2 Cs v—1 Poo | § c2

—(v=1)7
1 1
_N2+_ 1 — L —

12 1 A —2(y=1)/(v+1)] B
>t |1\ =
2 -1 & ]

To simplify thenotation, letaw =2 (y — 1)/ (y+1). Then
2 —Q
H 1 A 2a0—1 —«a
—_—t— ] = = AN 82
2+71[ <€M> ] g1y (82)
Now multiply by .~ and collect the termsin p on one side:
M2_a M_a —« 2a—1 52(1
I Y —_—
2 Y- (5 " 71

This equation for x could be solved numerically in a specific case, but let’s see what we can
learn ebout the general case. First notice that

v —1 2 4
2—-a=2-2 = =
v+1 v+1 v+ 1

—(v-1)

7l I

M=
/N /N

L
Poo
L) =2(y=1)/(v+1)
&

and

y—1 y+1 3y-—5

T+1 41  y+1

Since v < 5/3 aways, then 2o — 1 isaways < 0, while 2 — « is dways positive. So each
function

20—1 =14

Fp) = 5=+ — (89)
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and

7 §2a
GEO=¢""+=— (84)
has one positive power and one negative power. Thus each function has a maximum or
minimum. Atinfinity, x =0 and F () — 00. Also § — oo and G (§) — oo . Therefore
each function has aminimum at finite &.

Consider F' () first.
dF 2—a 4, « P

A SR L

" 2 v—1
_ 2 -« —a—1
= 33 (1 p)

whichiszeoat p = 1. Thus F' isminimum at . = 1 and
1 1 + 1

Foin=7+ =

2 y—1 2(y—1)
Now let’s ook at G :
5204—1
— = (20— 1)&X* Y 4 20

v—1
which equals zero for

200 — 1 —1 3y —5 +1 —1 5— 3
£:£m:f( 2)(7 )_(v )(7 ) -1 T (e)
e v+1 4(y—-1) 4
and then
 [(5=3y 2‘”( 4 1 )
Cmin - = < 4 > 5—37+'y—1
B <537>2‘1 y+1
4 (b-=3790(-1)
(537>2‘1‘1 v +1
4 4(v—-1)
Topology of the solutions. Bernoulli’s equation has been reduced to:
AYF (1) = G (§) (86)

Let’slook at the functions £ and G. (The plots are drawn for v = 3/2.)
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Now define A = G'min/Fmin. Then

@ If A > A.,then Gin < A\ Fyin. Thereis aregion of ¢ for which the RHS of equation
86 isless than Fyn, which is impossible.

() If X < A, then \™*G > Fn for al £. The solutions are alway's supersonic or always
subsonic.

©) If X = A\, then G = Gpi, cOincides with F' = Fyin. Thus the flow goesthrough a
sonicpoint (u=1)at¢ =¢, = % (5 — 3v) . A solution is possible which passes smoothly
from subsonic to supersonic or vice-versa. For the accretion problem, the boundary
condition isu — 0 as¢ — oo. Case (b) which is dways subsonic requires|large pressure
gradients, all the way out to infinity, to oppose gravity and slow the flow. Thisis a settling
solution. Thussolution (c) isthe usual accretion solution.
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v)h_l y+1 2(y—1) v
4vy=1) (v+1)

I
7N — 1 7\

where

Thus

(3v=5)/2(~-1)
- (5—3W> o~ (v+1)/2(y-1)

1/2(y—1)

(3v=5)
5—3
- [( - 7) 2—(v+1)] (87)
— =Admpy

T — e (83)
The value of \. variesfrom0.87atvy = 1.2 to O.SOz;tv = 1.5. Notice that the two val ues
v=5/3and~y = 1 causetrouble. Let’s look at them.

Then the accretion rateis:

Special case: v = 1. We have to go back to the original derivation. In this case the
sound speed is constant, and the equations are simpler:
1dP 1d d
- :cZ——p =c2—Inp
p dr Spdr Sdr
so that Bernoulli’s equation becomes:
2 GM
U—-l-cilnp—— =clnp,,
, " ,

2
and
/\:£2i’u
Thus =
2
1
2 pé 3
2
1
%—mu = g+2ne-In)
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In this case

has a minimum when

7

or p = 1, asbefore. Theminimumvalueis Fiyn, = 1/2.
1

G (&) = E +2In¢

has a minimum for L o
— +==0
¢ ¢
or £ = 1/2. Theminimum valueis
Gmin =2 —21In2

S0 A, is given by:

InA. = Gmin_Fmin:_]n4+3/2
1
Ae = Zeg/zforq/:l
= 1.1204

Special case: v =5/3  According to equation 85, £, = 0 when v = 5/3. Thefunction
hasits minimum at the accreting object. Thismeanstha the flow never becomes supersonic.
Theny —1 =2/3, v+ 1= 8/3, and with 5 — 3y = ¢, equation 87 becomes:
. e, 1 gy
)‘C*llﬂ)(zl) 27 =7 Jmye
wheres’ = /4. Nowlet z = ¢/~3<". Then
Inz =-3¢'Ine’ - 0ase’ — 0
since the lograithm — oo slower than any algebraic power. Thenz — 1and A\, = 1/4 for
v=5/3.
Transitions from one branch of the solutions to another can occur. For example, when
the flow goes supersonic, information about the solid object upstream cannot be transmited
back through the fluid. A shock wave forms and flow makes a transition to the subsonic,

settling solution. Flow cannot become supersonic again behind the shock because pressure
gradients slow the flow.

2.5.3 Transonic accretion

Ref: Hunt, MNRAS154, 141,1971
Let’ssummarize our resultsso far. For supersonic accretion, we have (eguation 76)

dM (GM)?
— =dnp,
dt E
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while in the subsonic case (equation 88)

dM (GM)* . 1
—_= Ae; = < A < 112
dt TPoo™ 3 4 S e

oo

Thus we might guess that the transonic case must be of the form:
dM (GM)?

= ﬂ'p ——
dr (v )

where ) is aconstant of order 1. Hunt’s numerical calculations confirm this guess. See his

paper for detals.

2.5.4 Applications

Neutron stars in binaries with stellar winds  The neutron star moves through the wind
asit orbits its stdlar companion. The semi-mgor axis of the binary isnot much larger than
the primary star’s radius, aout 10'2 cm. The orbital period is of the order of a few days,
and thus the orbital speed is about

27y 27 x 10" ~7x 107

VoD N T T Tipgs x 24 % 60 x 60 Tanys

The wind speed is about 600-1000 knm/s for an O-B type star. Thetemperature isregulated
by the x-ray source itself via Compton/inverse Compton cooling/heating, so we expect
T ~ Tx ~afew x107 K. Then the accretion radius is:

cm/s

2GM x 0 Mxo
RA~m=2.7x10 _—V2(1+ ) m
v (141 s (L+p
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where
V3 = Vi + V2

M orb
X 2
—— = TR pyingVrel

is the mass accretion rate onto the x-ray source,
dM,

Tl 47 RS, yirg Vaind
is the masslossrate by the star, R, istheradius of the neutron star orbit, and
My 1 (Ra\? Vi (27x1072)° M2 Vig
M, 1 (R_L> Vaind 4 Ve' Viina (1+ p=2)° R,
~ 1.8x1074 M o Vio

Ve Vaia (14 p72)° B2,
Note the very strong dependence on the wind speed. If the stellar mass|oss rate is about
3x107% Mgy, then the mass accretion rate onto the neutron star is

dMyx  5.4x10°"

dt Vit Mely
and the x-ray luminosity isthen
L, o GMe dMx o adM
’ Rreuronstar  dt ' dt
3 x 1036
= V—84erg/s

whichis consistent with observed val ues.
2.5.5 The solar wind

Ref: Parker: Interplanetary Dynamical Processes

In our previous andysis, the fluid vel ocity appears only as v? (or p2), sowv, can have
either sign - i.e. the solutions work for winds as well as for accretion. We have to modify
the analysis to alow for afinite wind speed at infinity (or at some reference point). Sowe
rewrite equation 79 using new varigbles

v
U= —
Ca
and
E=r/a

where r = a is the reference point and ¢, is the sound speed at that point. The equation
becomes:

0> 1 (p\"" GM 2 1 GM
) w - arTa
w1 (p\ _GMa _ wp 1 GM
2+v—1<pa> T T e
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and from the continuity equation, we have:

rPpv = d’pu,
L 1 Ua
Pa &

Nextwrite GM/c2a = H, and u? = u2 4 2/ (v — 1) — 2H. Then Bernoulli’s equation
becomes:

2 L\ oH
crit () - ®

Solution at large ¢  Ifu < 1 at large ¢, then we may ignore the termin w2 to get:

Taking theroot:
U§2 ( 2 1/(y=1) 1
e (71)U?> D
(1+5u%>
Ug 2 1/(’71)< 2H )
v or = —— - —— %0
2 <(7—1)U§> SRR %0

Whereas if u remains > 1, we have
2H 2 L
§us 7-1 ué? ug

H 1 u, N7 1
AR S

These two solutions correspond to the upper and lower branches that we found in the
accretion problem. (See Figure on page ). Noticethat on the upper branch, u — wu;
as¢ — oo (for v > 1). Thewind reachesa terminal velocity. Because energy is conserved,
thermal energy in the inner regions is converted to kinetic energy in the outer regions. The
flow becomes cold and supersonic at infinity.  (See below.)

S
%

Solutions at small £.
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Lower branch If u — 0as¢ — 0, then equation 89 becomes:

L() _ 2 2£<Hﬁ>
71 \ue? T oe T T 2H

e ¢ 1/(r=1) 2¢\ "V O
- wlemm) (o)

2
~  fl/(=1)-2 Ua 1w
~og [(y— 1) H]YO =D <1 v—1 2H> (92)

Thisis self consistent (i.e. ©w — 0) only if

! 2 > 0
v—1
< =
i 2
3
v <3 (93)

Upper branch ~ Onthe other branch, (u not smal), wewould have:

= £+L<)
§ ! -1 u§2

A (- ()
AE) (e ()
)

. s(H 25 £ ru,
- ﬁ(?) <1+4H eEnyi e
1

€
(2

Q

2

H 1/
We can simplify the last ter using the zeroth order term, u ~ V2 (?) . Then:

S
%

4H 2(v-1H

H 1/2 15 5"‘ —ay ui ==
(%) (1 o (o &
which showsthat u ~ ¢ '/ as¢ — 0. This andysisis valid only if the power of ¢ in

the last term inside the parentheses is greater than zero, or v < 5/3.  Otherwise our
series expansion does not converge.

m by
(L) (s St (u_i)*)
3

The solar breeze. The ceseu; = 0andy = 5/3 isaspecial case. For these vdues of
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the parameters, equation 89 becomes:

2/3
a 2H
v + 3 (“—2> —==0
ug
and thecondtionu; =0 is
2

U u2 3
- 11 1) —H = H==2-4Z
2+/(7 ) 0= 2+2

Thus we have:

This equation has a solution
(9%5)

which is called the solar breeze.

Boundary conditions at infinity So which solution describes the actual solar wind?
Wewant a solutionwith P — 0 as¢ — oo.  From the continuity equation (77),

_ Palla
P u£2
On the upper branch, © — -, and so
Pq Ua 0
p— —
Ulfz
and theefore P — 0 aswell.
On the lower branch
_ Pala
r= . \/G-D
§ ?5" ((’Y-U'M)
1/v—1
_ (- Dui\'"
Pa 9
and therefore
-1
o p iv:P (’y—l)uQ v/
a pa a 2
iscomparableto P,.
For the solar breeze,
— Lo,
T £3/2

Thus the upper branch and the breeze are the only allowable solutions. But the breeze isa
singular case, requiring very special vaues of the parameters.

Mach number Now let’slook at the Mach number.
v Ca (pa)(’Yl)/2
/"[/ = e u— = —
Cs Cs P

Then for our various sol utions we have:
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1 Large¢

e Upper branch:

u1€2 (v=1)/2

= Uy — 00 as€ — oo

Uq
Thusthis solution corresponds to a cold flow.
e Lower branch:

Uy < 9 >1/(“/—1)< 9 )1/2
n o = |——— —_—
& \(y-1u? (v —1)u?

<l
2

Ug 2 ) -1
= = |———— —0asé — o
¢ ((vl)ﬁ
for all values of .
e Solar breeze: u
= T = oo € — 0
2Small ¢
In general:
£ _ Lo
o ug’
So

_ (v—1)/2 _
B (&)(’Y 1)/2 B <u§2> K B (i) 1+ (v—1)/2 o (
L=u =u = U, 13 = Ugy
p Uaq Ua

e Lower branch:

Here we use equation equation (92) to get:

§<3*2w)/(771) =a
Ho= Uq 5771
RN

- (v —1) H](7+1)/2(7—1)§ ¢
Ug (32 (v 42(n—12
= 2(y—1)

- [(’Y —1) ]_I](’Y+1)/2(’Y*1)§
The power of ¢ is:
B-=200+D+20 -1 5-3y

2(y—1) C2(y-1)

(96)
N
7) &
@

which is always positiveif v < 5/3. Sou — 0as& — 0 unlessy = 5/3, in which case x

approaches a constant value.  Notice that there is a problem withy = 1,
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aready noted similar problems above.  This branch exists only for v < 1.5.
e Upper branch:

Here we use equation (94) in equation (97) to get:

il 2l
() (e

=
Il

Ugq £ Uq

—\
e (\/2H> 5(3“/—5)/4*>00355H0f0r’}/<5/3

Uq

We have previously noted that thisbranch exists only for v < 5/3.
e Solar breeze:

From equation 96, © — 0 as& — 0. For the breeze, we have theinteresting situation
that the lower branch in v is the upper branch in u, and vice versa.
Thus we have the following situation:

quantity at infinity asé — 0
upper branch lower branch upper branch lower branch
— 1/2 _
speed — ! 24 = .
‘?(wnu%) b ( £ > S e AR
U a1 u? >-1
pressure ﬂ“‘“ulg? P, ( > )

s (o2 )T, (E) T o P
AN CE ™ m‘];ﬁ;
Parker argues that the solution through the sonic point is always set up. Hisargument
goes likethis: Assumefirst that there is a high pressure & infinity, so that we are on the
lower branch of the solution. Now slowly decrease P.. The wind will accelerate and «
will increase But P, isindependent of u,, so the flow will continueto accderate until it
switches to the upper branch through the sonic point. Andthenwe havethe criticd solution.

Mach number Uy (ﬂ-fz)QLEA

Uq
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What isthe significance of the constraint v < 1.5 for the existance of the lower branch
solutionu — 0 as & — 07 Physically, it means that the gas must be heaed as it expands.
The critical solution is analagousto the expansion of a gas through a Laval nozzle Gravity
acts like the throat of the nozzle.

For the upper branch to exist we need u? > 0, i.e.

2 2GM
>0

or

c2a | (%8)
The gravitational field must not be too strong or the gas will form a static atmosphere rather
than awind.
To find another constraint, we differentiate equation 89:

du (N7 oy (a7 odu 2H

2ud€f4(u) e 2<§2) zﬂdf T = 0
d A AL H
(@) ) 2 g

We want the vdocity to be increasing outward at the referencepoint £ = 1. At £ = 1 the
termin parenthesesonthe LHS is

Uy — =

Ugq
whichis < 0 for u, < 1. Thenthe RHS must also be < 0, which meansweneed H > 2.
This is the nozz e condition. From equation (98) with u, < 1, we find:

2< H< ;
v—1
which gives the same condition (93) that we have previously found for ~.
Thermal conductivity isimportant in the solar wind. Heat is conducted up from the
coronaand keeps~y close to 1 in theinner regions, essily satisfying this constraint.

2.5.6 Radiation pressure driven winds

Now we add to our theory the interaction of the fluid with the radiation from the star (or the
accreting object). For winds, this modification isimportant when discussing luminous stars
such asO and B stars.  To get the basic idea, we make some simplifying assumptions (eg
Castor, Abbot and Klein, Ap.J. 195, 160, 1975)

Radiation pressure is greater than el ectron scattering pressure because of absorption in
spectral lines due to atomic and molecular transitions. For electron scattering only, we
would have aradiation pressure force

fluzx orLp

F, = T Ne =
P i d7rZem

The mass m isone half the proton mass if the fluid is ionized hydrogen. So we write the
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total radiation pressure force as.

orLp
Fy = = (1+ M (1))
where M (t) o« t—¢ is the effect of the lines, and ¢ is the optical depth. (CAK take
M ~t=07/30). M — 0 ast — oo because all the lines become optically thick and hence
less efficient at absorbing radiation.

When thisextraforceis included in the momentum equation, we get:
dv 1dP GM, orL

Yar ~ p dr 2 4drZem
The temperature at each point inthe wind is assumed to be given by the local energy bdance
at that point which isdominated by the radiation (heating and cooling). The timescaleto
reach thermal equilibrium is short compared with the flow time scale. Thus we take

(1+ M)

P = pc?
where c¢? isthelocal, isothermal sound speed, and is presumed known. T hen:
1dP  c2dp  dc?
- —— + —

p dr p dr dr

and as usual JM/d
A/dt
= 99
P 4mr2y (%9)
Then
ldp 2 1ldv
pdr r wdr
and so
1dP 2, c2dv  dc?
__:__Cs___+_
p dr r v dr dr
Now write
- UTL
N 47rcGM.m

so that the momentum equation becomes:

cg dv 2, dci G M,
(U—T)% _;CS_W_T_Q(I_F_F]\/[)
If M = 0, we havethe previous equation with a reduced mass Mgt = M, (1 —T) . If
I' = 1, Mg = 0 and thereisno effective gravitational force!
The optical depth depends on the wind speed gradient, since Doppler shift moves

material into or out of the optically thick region near the line center.

t(vo) = %/0 pk (v)dr

where o 1, isthe totd cross section for absorption in theline p is given by equation 99 and
Uth
K (V) = KL g ——

|dv /dr|
In this expression «, o is the absorption coefficient at the line center, v, is the thermal
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velocity width of theline and dv/dr is the speed gradient in thewind. Thus v,/ |dv/dr| is
the distance before the frequency is Doppler shifted out of the line. There is one such term
for each rdevant line. Then:

PO [ Uth

|dv/dr|

dM/dt orv

drr2v |dv/dr|

M — «
M=kt “=k <d /dtaLvth) <r21)d—v>
47 dr

and so

Now define the variables

_ 1
w—2v

1

U = —=

r
2 pde? ;
h(u)=—-GM,(1-T)+2c;r—r =, =2 known function of r
T

47 @
C =TGM.,k | —
<0LvthdM/dt)

Then Bernoulli’s equation takes the form:
2
F (u,w,w") = (1 - &> w' —h(u) — C (w)

2w

«

wherew’ = dw/du. As usual we |ook for a solution that goes from 0 at uw = —co (r = 0) to
alargevalueat u = 0 (r — o0). Itturnsout that there are mwo critical points. One is the
usual sonic point, and one where
2
w= 0—25 — —2 1 {messy function of ¢2 and h}
—
As a — 0, thispoint approaches the sonic point. For i < 0 (which is alwaystrue) the Mach
number is greater than 1 at this 2nd critical point.

The wind density must be below amaximum value. If thedensity istoo high, the wind
gets optically thick too soon and there is not enough pressure at high altitude to drive the
wind.

Accretion flowsare similarly affected by radiation pressure. With I' = 1, the accretion
is stopped. This is the Eddington limit.

Lewg = 47rci¥iw*m
_ 4m (310 cnis) (667 x 105 om?/g- ) £ (167 x 10~ *'g) (2 % 10% g) e
6.6 x 10—2% cm? Mg

M
= 6.4x 10%—= erg/s
Mg

Steady state spherical accretion isnot possible above the Eddington limit.
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3 Accretion disks

Reference Pringle, Annual Reviews of Astronomy and Astrophysics, 19, 137, 1981

3.1 Introduction

When the accreting material has high angular momentum, we get an accretion disk. Material
must orbit the gravitating object, and cannot moveinarhitrarily close without losing angular
momentum. |f the angular momentum per unit mass is ¢, then the tangential velodity at

distance r fromthe central objectis

4
Vp ==

and the force per unit mass required to keep the ﬁuid in circular motion is:
v2 2
F T e—  e—
© r r3
The inward gravitational force equals this centripetal force at a distance r, where
GM 2 N 2
= — T == —
r? 7"? ‘T oM
Gas cannot movein any further since all the inward force is needed to maintain the orbit and
hence thereisno dr/dt.
In the absence of forces preventing it, each parcel of gas moves inwardsto the r,

corresponding to its ¢, and its speed thereis vy = £ = /<AL, Thus the fluid parcel isin
aKeplerian orbit. Sincev = v (r), we have velocity shear and viscosity and instabilities
act to smooth out the shear. Angular momentum is transported outward and material is

transported inward through the disk.
Disks are common phenomena.

1. Cataclysmic variables and dwarf novae. The disk contributes most of the light
from the system. Observational evidence for the existence of disks includes Doppler
broadening of spectral lines and observed Aot spots where the accretion streeam from the
companion meetsthe disk.

(100)

2. X-ray binaries. Disks are mostly conjectured rather than directly observed. Butin
certain sources such as HER X-1 the warped, processing disk occasionally occults the
X-ray emitter.

3. Gas disks observed in galactic nuclei (in 21-cm radio emission and molecular lines.
Also HST images.) May be disksaround central black holes.

4. Disks around young stars may be proto-planetary systems. These are observed
primarily in the infra-red.

5. Symmetry of extra-galactic radio sources may be explained if there is adisk around the
central engine that actsasa collimator for thejets.

6. Disks are conjectured to be present in many stages of binary star evolution- e.g x-ray

56



binaries. S$433 may have one.

3.2 Basic theory

As usual we shall simplify the discussion by assuming the systemto be in asteady state. We
also assumethat the mass M of the central object remains constant and that density in the
disk ishigh enough for cooling to occur. Thus the flow issupersonic.

3.2.1 The momentum equation

a) Radial component

o, v, 19P GM
— =2 e— == =0 (101)

or r  pOr 72

As usual we work with the mach number ¢ = vy /cs, where ¢ is the isothermal sound speed

() Z\/f (9
<UT> v(f) G

Ur

2 9 (2 _
or \ 2 r r2 +5’r (cslnp)

o (v vi GM 9 (v

- (=) _ = (=

87"(2) 7’+r2 +87’<,u21np
If > 1, then the last term may beignored with respect to the second. Then if wealso
have v, < 1, wefind

0

GM
’Uqg = ,

b) z-direction (perpendicular to the disk) We assume that v, = 0 so that the
momentum equation becomes the equation of hydrastatic equilibrium:

aswe concluded inthe introduction.

Lop  G:
pdz 12y
where z /r = cos § for z < r. Then we can estimate the disk thickness:
0 GMz
2, -
9z F r3
GM 22 Vg 22
Inp = — —— __(_)
3 2¢2 2¢2 \r

(C isanintegration constant), and thus

pmner (2 () ) men (3F)) 0o

where the scale heght of thedisk is
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and is much less than r, as required for self-consistency. Note that the disc flares” - H
increases as r increases. As maerial flows inward through the disc, its z—component of

velocity is of order:
H

r
V, Ny =——— ===

z T l,L
consistent with our previous approximation v, = 0.

v ,
Y Y oy,
rop

3.2.2 Mass flow inward

Mass flows inward through the disk a a rate

dM
= 2mrE (—vy.) (103)

where X (r) isthe surface massdensity in the disk:

+oo
E(T):/, p(r,z)dz~ 2Hp (r)

To make further progress, we need v,.. Recall that it is viscous drag that allows material
to fall inward, so we expect v, to depend on viscosity. Since we found v, from the
radial momentum equation, we look at the ¢ component to get v,.. Write v, = {2 where
Q = /GM /r3 isthe keplerian angular speed of the disk at radius r. Then the angular
momentum contained in an annular ring of thicknessdr isdL = dMr2Q = 2rrSr2Qdr.
This angular momentum is carried outward by viscoustorques. The net change of angular
momentum in the annulusis:

fluxin- flux out = 27rrEr2QvT.| — QWTETQQU"h

r+dr

d
—_ (27r27’3§2vr) dr
T
Now the viscous force isgiven in terms of the kinematic viscosity v :

dQ
F (r) = 2nrvX (rate of velocity shear) = 271'1"1/21"5

and thus the viscoustorque is
. . dQ
G (r)=7rF (r)= 2113y ——
(ry=rF(r)=2nrv —
The net torque on an annulus of thickness dr is

Q
dG:Gw+my4um=i<%ﬁ@iOdr

dr dr
Then setting torque equd to rae of change of angular momentum, we have:
d 3 d 3 < dQ
— (27Xr°Q = — |2 Y—
dr(wr UT) dr<7rru dr>
v dS) k
v Ga T 1o

where k isan integration constant that must be determined by the boundary conditions.
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For a disk around a star with radius R, and angular speed ()., there must be a boundary
layer where € changesrapidly from the Keplerian value /GM /R3 to 2,.. Since we must

have au

TE > O2R,
for the star to hold together, then 2, < Qe (R.). The angular speed as a function of
radiuslooks like:

Thus dQ2 /dr must be zero at some r not much larger than R, and Q (1) =~ /GM /R3.
Then from equation 104,
v, (R,) ~ kO k
R3%\/GM/R3 X (R,)/(GMR3)

and hence

v dQ) N v (Re) X (Ry) /(GMR3)
Q dr 730
0 2 daMydt
o <L> damMjdt (105)
Q dr R, 273 R,
where we used equation 103 evaluaed at R, to smplify the last term. Then using this

eguation again, we find:
/ —3/2
dM . <ﬁd§2 - < r ) dM/dt)

dt Q dr R, 22X R,
dM r\ 2 v dQ v
— ( (R*) ) e — 37r - RE SN (106)

So Xv must vary with . Notealso that dM /dt — 0 asv — 0, asexpected.
From equation 105, we find that forr > R,,
3v

Ur R — m——

2r
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whichisnegative (i.e. the flow isinward) and depends directly onthe viscosity, as expected.
The viscosity dso dissipates energy. The power expended by the vsicous forces on our
annulus of thickness dr is:

dP = F-¥ :27TT2VZ(:;—Q ((r+dr)Q(r+dr)—rQ(r))

T
Q 2
= 2%y <d—> dr
dr
and thus the power per unit areais
dp  2mrtvs () ar . ( dQ)2
dA 2rrdr v

This energy isdissipated as heat. using the Keplerian expression for €2, and using equation
106 for v¥, we get:

Dy = () ()T (3) eu
o= 3w dt R, 2 73

3 dM GM r\ 2
= —— (1 (= 107
dm dt 13 ( (R*> (107)
In this expression, the viscosity v has disappeared!  The total luminaosity of the disk is
then:Thisisone hdf of thetotal accretion energy.

1. Solid Star: the other half of the energy must be rdeased in a boundary layer at the
stellar surface.

2. Neutron star with magnetosphere: Replace R. with R,,. Energy can be carried
through the magnetosphere and rel eased at the star itself.

3. Black hole: R, must be theradiusof the last stable orbit. The other half of the energy
disappears down the hale!

Now let’s look at the energy radiated between radii R, and R, both of which are > R,.
3 dM 1 1
LRy — Ry))==—GM |———
(By = Bo) = 5= <R1 Rz>
Thisis 1.5 times the energy released in the region between R, and Rs. Thusenergy must be
transported out from the inner regions of the disk.

3.2.3 Local disk structure

We already found the density profile (equaion 102). The density falls of f rapidly above the
central plane of the disk. For supersonic flow, as we have assumed, H < r, i.e. thedisk
is thin. The temperaure gradient perpendicular to the disk is much greater than the radial
gradient, thusradiation escapes primarily perpendicular to the disk. I'n equilibrium, the disk
reaches atemperature 7' (r) such that the radiated energy 207 equdss the heat input D (r) .
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(o isthe Stefan-Boltzmann constant.) Thus:

) T4iidﬂGﬂf 1 — L e
S PR R,

and thus: "
3 dM GM R.
T=|——— 1— /=
Som dt 13 r
Forr > R,,
, —3/4
ron(g)
where

o (B3 dM M
Y7 \8om dt R
Thus the temperature is greatest in the inner regions of the disk.

The total radiated spectrum is:
Rmax
F, = / B, (T (r))2mrdr
R,
At high frequencies, we get an exponential drop off. At low frequencies, v < kTuy/h,

radiation comes from the outer regions of the disk, and the spectrum oc 2. To investigate
the intermediate region, let = = hv /kT. Then

R L/ A Ly (S 2 DR
kT2 dr kT2 4r r

2hv3

e*—1
T 4/3 kT 4/3
= * p— = R* —
" ( T ) ho

Pmax ] 4
F, = 47rhu3/ r—rdm

B, (T) =

e* —1 3x

C!V /3 Tmax
].6 3 2 k: 1 8 / 1 5/3
== 3 TnY R* ( hy ; or 1£E T

ZTmax 5/3
T
fo's 1/1/3/ dx
T x

5

e —1

So the spectrum looks like:
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3.2.4 Viscosity

The usual molecular viscosity proves inadequate to explain disk structure.  Therefore,
viscosity isusually assumed to be due to magnetic fields or turbul ence.

Turbulence The flow is strongly sheared and supersonic.  Thusthe Reynolds number
R = Lv/v ishigh. Thisleads usto believethat turbulence will develop in the disk, but
this has not been proven.

Magnetic viscosity The flow in the disk winds up the magnetic field lines, and
reconnection will occur.  The field may be chaotic.  The magnetic fidd energy is
constrained to be [
2
= R A
since reconnection will generate heat in the disk.
For both of these processes, we can parametrize our ignorance with a parameter called

the a—parameter as follows

1. Turbulent viscosity:
v fv
where £ isthe scale length and v isthe speed of the largest turbulent eddies.  Obviously
{ < H, thedisk scaleheight, and probably v < ¢, SO
v Hes =aHe,
wherethe parameter « < 1.  But H/r = ¢, /v, (equation102), so
2
SR (108)
Vg
2. Magnetic viscosity:  The magnetic stress is of order == (B,B,) ~ B*/87 ~
pc? (v /c?) wherev,  istheAlfvenspeed.  Now we derived the viscous stress =
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forcel/lengthasv¥rQ), so

v </ pdz> rQ| = /pci (v%/c2) dz
so, evaluating p’ for a keplerian disk,
SO S X
“ZE/20 Y%,

whereinthiscasea ~ £ (v3/2) 1 again.

So the usual method is to use the so-called o —viscosity given by equation 108.  Then
we have a radial velocity component
ol , Cs Cs
vr RV = acies —acsﬂ—r—a7<< 1 (109)
Note that the inward velocity is directly proportiond to the value of «.  Then the Reynolds
number is

whichis self-consistent.

3.2.5 Radiation from the disk:

If the disk is optically thick, then the spectrum does not dependonv  (or o), aswe
have seen.  But if energy is dissipated in optically thin regions, we do not have complee
thermali zation of the radiation and hence we can have a higher effective temperature Tg.
If the surface of the disk gets hat, there can be adisk corona  aove and bd ow the central
plane For high luminosity systems we can even have adisk wind.  Radiation from the
inner regions can be reabsorbed farther out and cause heaing and evaporation.

3.2.6 Timescales

1. Rotational timescaleis )

t¢>N—N—

Ve Q

2. z-structure
H H r vy H

b~ - ———— s —t ]~ E
e, T Vg Cs T¢M ¢

3. surfacedensity isgoverned by dM/dt and v :

2
r T (Qr)’1 1
by ~ =~ =—Qr = ==plty >t
vy ozczA acz Q ol e ¢

4, Thermal timescale

2 2
) D(r) vEQ?  ac?2rQ? o™
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3.2.7 Instabilities

e Thermal. Sincet;, < t,, wemay assumeX = constant. In equilibrium, heating
=cooling. Butif the heating rate increases with temperature faster than the cooling
rate, asmall perturbation will grow.  Sincethescale height H oc ¢,, increased T’
=increased H = decreased p and therefore decreased cooling on the timescalet, ~ ¢,.
Thusthe disk should be thermally unstable.

e Viscous. Sincet, > t;,, thermd equilibrium always holds, heating balances cooling
and thetemperature 7" (r) isfixed. Thenv = v (X, r) . Define A = vX, and consider a
perturbation ¥ — X + 6%, A — XA + 6\, where

o\
0N = 82(52

The continuity equation gives us:

0¥ 10
o + = (r¥v.) =0 (110)
while the ¢ —component of the momentum equation gives:
9] 10 10
5 (2r2Q) + Pl (rEo.r?Q) = - (vEriQ)
where the LHS equalstherate of change of angular momentum and the LHS equals the
net viscoustorque. Expanding the second term, we get:
9 (sp20) 4+ 22 24 120 0 a0y 10 o aqy
5 (2r°Q) + = (r¥v,) r°Q2+ — (r’Q) = — (v2rQ)
Now 2 does not depend on time, and we can use equation 110 to simplify the second
term:

10

2&_822 rYu. 0 , o 19 3/
rﬂatZ at/Q—i- . ar(TQ) = T@T(UZTQ)
9 2 _ i 30/
TEUT@T (7’ Q) = 3 (Z/Zr Q)
_ 1 9 30y
riv, = (7'2(2)' o (1/27” Q)

Now we substitute back into equation 110:
Y 19 ( 1 9 .
——— () ) =0
((7‘29)/ or ( " )>
Now for a keplerian disk, @ = \/GM/r?, s0r2Q = VGMr and (r2Q)" = +/GM]r.
Also, ' = —2Q /r. Thus:

v 10 (2 o (3. . (G0
ot rOr \ \/JGM /rOr 2 r3

- 22 (2 esm)

787”
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Then

0 OX 96X 0A3 0 0
7ot~ asrar (WE GYG) am
Let’slook at
2 (L) = L *1/2 - (5)/7) +\/r — (6AVF)
or or 2
(o) oo
= 2 \/- (6N) +75)\ -l—\/- — (0N) -0-?/-5)\
10 1 1 0
= S5+ —6>\ +r (2\/'8 \/_ ~ RN T (5>\))
10 1 10
= 3o (0X) + 5)\+ (5/\) +7" (5)\) T oA + 2o (6N)
30 82 10 A
= 56_(6)\)+TW(6)\) _53_(6 )+—( o 6)\)>
_ 19 2
I REAR
Thusequation 111 is of the form:
Din= Rayzsy 4 miﬂ(w)
ot 0% 0% 2r Or

which is adiffusion equation for o .

The standard form of the diff usion equationis:

OF
En = DV?*F
To solveit, separatevariables: F' = X (z)T (t), to get
1dl _D&X "
Tdt X qp consant =
The solutionis:
T = Toekt
and _
X = XoeVH/ D

For stability, we need & < 0 (perturbation decays in time) in which case X =
Xoexp (ii\/%‘-x) which isan oscillating disturbancein space if D > 0. For the disk,

spatial growth isas bad as temporal growth, since the disk is disrupted either way. Sowe
need D > 0.

Digression: solving the equation for o\ Our equation is a little more complicated

because of the extra term, but the same general ideas apply.

0 oXN3 0 0
2= S22 (Vi (7))
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LetdA = R(r)T (t). Then

1dT 10X3 0 0
T = e (VigE (RVF) ) = consant

Then T = Tye™ and

0 %) kRr
or <\/F8r (R\/F)) 3D
where D = 2. Expand the L HS:
O’R 30R krR
"o T 2%9r 3D
Look for asolution of theform R = g (r) exp (\/k/3Dr) . Then:

G G (VD) + s (V)
?927“ ( \/_— + —g) exp (\/ k/3D1")

Stuffing into the differential equation gives:

d?g k dg k 3 (dg k kr
29 2\/ Sy =y) = 0
T(dﬁ “N3pw T3 T\ T VIpY) T 3nY
d?g k 3\dg 3 k
" 2+<T2V3D+2) ar T 2V3DY

whichisugly. Look foraseriessolution: g ="  a,r"*?

k 3
_ n—+p—2 n+ 1
rE an(n+p) (n+p—1)r"t? +<2”/_3D+2> E an (n+p)r"tP- \/ E nT

|
o

%3 3 %
n + +p—1)r*trl 4 (n+ QPP [ — ot 1 | D pntp
Za(" p)(ntp=Lr (n p)<r V3D 32" 2V 3D

Looking at the lowest power of r, whichisr?—1 we get:
3p
aop (p — 1)+700 =0

which hasroots p = 0 prp = 1 — 2 = —%. Then therecursion relation is found by looking
at the power rrtm :

k 3 3 k
amy1 (p+m+1)(p+ m)+am (m +P)2\/3—D+am+1§(10+m+ 1)+§\/3—Dam =0
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k 3/2+2(m +p)
3D(p+m+1)(p+m+3/2)
am  3/2+2(m+p) [k
S (p+m+1) (p+m+3/2) V3D

Am+1 = —am

So for p = 0 we get:
m—13/2+2(m—1) k_
m m+ 1/2 3D

_ Ly 2m —1/22m —5/2  3/2 ( k )'”/2
- m! m+1/2 m—1/2  3/2\3D

[07% =

giving the solution

- ” m/2
—_— (=D™2m —1/22m —5/2  3/2 (/‘”"2)

m=0

while forp = —1/2

Am-1 2m—1 | k
Ay = —=—— _
m—1/2 m 3D

m/2
mag 2m —1 2m —3 1 k
L (

mlm—1/2m —3/2 1/2 \3D
giving
Ry X (=)™ 2m—1 2m—-3 1 (er)m/Q
R = m—m k/3D ce e — | —
\/FeXp(V/ )3 m! m—1/2m—3/2 1/2\3D

m=0
Both series converge so our conclusion about stability isnot changed. Weneed D > 0 for
stability.

3.2.8 The two-temperature accretion disk
Reference: Shapiro, Lightman and Eardley. Ap.J. 204, 187, 1976
Consider an optically thin disk, where cooling isprimarily by Bremsstrahlung. Then
A=5x102p*T? eg-s'-cm™3
and therefore the hea removed from each unit area of the disk is
Q™ =2AH =102 p*HT"?erg- s -cm™2
Equate this cooling rate to heating by viscous dissipation (equation 107):

3 dM GM —1/2
UG (1 () ) e s
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We previously found

roC Cs
H = —===2,_-=
I U¢T Q

4T\’ 5 T
(109K> (4.0 x 107 emis) | [ =

Now let’s express the radiusin terms of the Schwarzschild radius of amass M :
2GM

2

rs =
c

c2

GM

T,+T.\"* 8 re GM
<W> (4.0 x 10 cm/s) ?T*T

_ D (4 x10h) 20 R 10T) M

r

Te = 2r/rs =
Then:

=
|

(3 x 1010)° Mg
: 379 M
= (2x10%cm) Ty/ %P —
®
From equations 103 and 109, wefind ¥ :
_dMQ
Cdt 2rac?
and then
_ = _dM_9o  dM @
P = 9H " Tt draczH  dt 4mac
GM
= (10" gls) M7= T2
r3dmwa (4.0 x 108 cm/s)” T
. (1017 g/S) M17 GM< 62 )3
4 (4.0 x 108 cmls)’ T2 18 \GM
(107 g/s) My 1 8

A7 (4.0 x 108 em/s)” o7 T2 (G M)°

(107 g/s) My, 1 (3x100emis)’ (M. /M)

47 (4.0 x 10% enVs)® oT2/% 1 (6.7 x 1078 cm? /gs?)* (2 x 1033 g)*

Mo \? My, 1
— (5.0 glem?) <_®> Mg 1
M) G
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Then we can solve equation 112 for the temperature:

T _ 1 BAMGM (1 (o 172
~ 1021p2Herg-s-'-cm-24x dt 73 R,
1 3 GM [ 2 \°
~ - - =10 M= <GCM>
, 3 /2 3/2 N n L
1021 (5.0(%2) ﬁi;/%ig) (2 x 100 73 /% 4L )
My 1
104572 = Q2104 P =2 _19.385
9 Y VI Vo
and thus
.M M
T3 = 1.6x 10°——
M® a27”*/
M\Y? M2
Ty = 40—
’ <M®> ar/4

This disk isvery hot!
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