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Now we are going to take a look at some of the consequences of collisions between the
plasma partides. We’ll start by looking at collisions between the charged particles and
neutral partides (neutrd atoms) in a partially-ionized plasma, because these collisions are
easier to analyze than those between charged particles.

1 Effect of collisions on the equation of motion

Each collision is described by the collision cross section o. Classically, o isjust the area
of the particle we are colliding with. Electric and quantum eff ects provide corrections to the
classical result.

We focus attention on adab of area A and thicknessdz. This slab contains

dN = nogdV = ngAdz
target partides, where n is the number density of these target particles (neutral atoms, for
now). Thetotal areaof the dab blocked to incoming charged particlesisthen
Abocked = 0dN = ongAdx
Here we have assumed that dz is so small that target particles do not get in front of each
ather, thusreducing the total blocked area.  The flux of outgoing particlesis reduced because

of the ones that get blocked. Then if the flux of incoming particles is Fi, particles/m?, the
fraction that is blocked isjust equal to Apjocked/A, and so

Fou = Fin (1 — ongdzx)
and thus
dF = Foyt — Fin = —Finongdz
and hence we form the differential equation

dF
E = —onoF
whichis essily integrated if ny and o areindependent of z :
F = Fyexp (—onox) 1)
The quantity
1
A= — 2
ongo

is the mean free path between collisions.



The mean time between collisions is

A 1
T ===
v ong
and the collision frequency is
1
Veoll = = = Noov (3)

. . T o .
(Strictly, to obtain a more accurate result, we should average over the distribution function.)
Now we can amend the fluid momentum eguati on to account for the momentum removed by
the collisions.

d—ﬁ = —ﬁ = —MmnVey
dt col| T
Thus the momentum equation (plasfluid notes equation 11) becomes:
di ou = s - -
mnd—?:mn [8_1;+ (ﬁV)ﬂ} :qn(E+ﬂ><B)—VP—mn1/CO||ﬁ 4

Next let’s spedialize to the case B = 0 (unmagnetized plasma), and look for asteady
state sol ution, aswe did before when looking a particle drifts. Then% =0, and if thedrift

speed is smdl (very subsonic) we can also neglect the non-linear term (ﬂ‘ @) u. Weare
left with:

an — VP — mnvegi =0
whichwe can solve to get

. qnﬁ—ﬁP q 5 kT Vn
u = = — —
mnv coll mv coll MVeal T
The quantity
q
=Z+u ®)
. . MVcol
is called the mobility, (the + being the sign of the charge ¢) and
kgT
5_—-p (6)
M coll

is the diffusion coefficient. Notice that the diffusion coefficient has dinmensions of L2 /T
The flux of particlesis then:

F =nii = 4unE — DVn )
When the electric field is zero, the flux is proportional to the density gradient:
F=-DVn ®)

aresult known as Fick’s Law.

In a plasmaitis unusual for the dectric field to be exactly zero. Because the electrons
have ahigher thermal speed than theions (at the same temperature), the diff usion coefficient
is larger for the electrons than for theions. The electrons diffuse down the density gradient
faster, leading to an imbalance between the electron and ion densities, that in turn creates
electric field. Theelectric field actsto slow the dectrons and speed up the ions until both
diffuse a the same rate. The resulting diffusion is called ambipolar diffusion, because both
charges (ambi means both) diffuse together.

To determine the electric field and the diffﬂsion rate, set theion flux equd to the electron



flux: . . . . . -
Fy=pnk—D;Vn=F, = —punk— D, Vn
(Here we are using the plasma approximation: n; ~ n,. but £ # 0.) Wecan solve this
relation for E .
n

== ©)
and then the flux (of either species)is: ' ‘
. D; — D)V o
F ,u,in(_l—n —D;Vn
My + e M
[MiDi —wiDe — p; Di — .UeDz} =
— vn
/’Li =+ :u’e
D, D\ =
- (%) n (10)
/UJi :u“e
whichis Fick’slaw with anew diffusion cogfficient:
o kpT. 2 kgT;
Da _ ,uiDe + :u’eDi _ M vcoll M Veal mvcdl M vcal
122 + He M veoll mvcdl
kg (T + T;) (1)
(m + M) Vedl

The diffusion is dominated by the higher mass ions. Note the symmetry between properties
of electronsand ionsin this expressin for D,

2 Solutions to the diffusion equation

Inserting our expression for the particle flux into the continuity equation, we have:
on = =
— . F =
En +V 0
8” 2
—_D = 12
5t Vn 0 (12)

We may amend this equation to include a source (or sink) of particles, S:

@ - DV?n=28
ot

In asteady state, -g; = 0, and so the equation simplifies:
-DV?*n =S (13)

(I'n the absence of asource, thereisno steady state solution.)
Now let’s consider what the source might be.

2.1 lonization

The rate of collisional ionization (production of new ions) is proportional to the density of
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plasma particles (and also to the density of neutrals)

S=272n
Then the diff usion equation (13) takes the form
—-DV?n = Zn
Vin = f%n

In aone-dimensional problem, the solutions to this equation are sines and cosines:

s sen((Z) < nen 2

The wavelength is fixed (A = 27 +/D/Z) and so we must fit the boundary conditions by
adjusting the constants A and B. If n = 0 at © = d then

() 5w (Z) -
= sy
ol () - B) e[ Z)]

In cylindricd coordinates with azimuthd symmetry, the diffusion equation takes the
form:
10 on n zZ 0
r or r@?‘ Dn N

Changing variablesto w = /Z/ Dr, we have

determines

1
n' +=n"4+n=0
w

This is Bessel’s equation of order zero (Leaegn 8.69 and 8.70), with solution

| Z
n:J0< 57“)
andn — 0asr — oo.

With a source term along the cylinder axis, we have:
Vin = —%5(r)

which has the solution:
n=nglna/r
This solution gives n = 0 at the edge of the cylinder, » = a, and since (see L ea egn 6.27)

1
VZIn== —276 (r)
r
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then
So

- 2w D
The solution isdivergent at » = 0 because we chose the source to be a delta-function.
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2.2  Recombination

When an electron and an ion recombine to form a neutral atom, the plasma density
decreases. We havea sink. Sincethetwo particles must collidein order to recombine, the
recombination rate i s proportional to n? :

d
d_TtL = —on®

and our diffusion equation takes the form
on 9 9
Er DVsn=—an

In the absence of gradients, (V>n = 0) or when n islarge, (n > =5, where L isarelevant
length scale) the equation becomes

on 9
—_— = —an
ot
with solution
1 1
- = — 4ot
n N
n = —20 (14)
1+ atng
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This solution will hold until n dropsto alow enough vdue that the diffusion term
becomes important. This happens when

or

2.3 Time-dependent solutions

To obtain the full solution, we try separation of variables. In one dimension, look for a
solution of the form

n(z,t) =X ()T (t)
Then equation (12) tekesthe form

Dividing through by XT', we get:
1dT 1d*°X
T dt X dz?
The first terms depends only on ¢, and the second only on z, so we require that each term be

separately equal to a constarnt.

=0

dT
oM
We chose anggative separation constant because we expect n to decrease with timein the
absence of sources. Thus
T=e¢k



Then the equation for X is

1 d*’X
—_ J— D_ f—
K X dx? 0
d’X k
— - =X
da? D

and the solutions are sines and cosines

[k |k
X = Acos Bx—i—Bsin Bx

the complete solution is of the form

t
n = ng exp (—:) |:COS\/LD_T + Bsin \/LD_T:|

wherewewrote k = 1/7.
Writing this in terms of thewavelength A, with A = 27V D7, we get:

(2%)2 Dt 2rx . 27z
n=mngexp | — cos + B s1nT

A? A
Herewe can see that the shortest wavd engths decay the fastest. Thusthe density distribution
will be smoothed intime

distribution at ¢ /to = 0, .25, 5and 1, wheret, = A2/ (27)° D
Inacylindrical system, the equation (12) is:

on 10 on
b (v5E) =0

and again we separate, withn = R (r) T (t):



and dividing by RT we have
Ldr D (., R\
T dt _R<R a r>_0
The solution for T' is the same as before, and then the R equation is
! 1
D<R”—£> +=R=0
T

T
whichis again the Bessel equation of order zero. The solution is:

s ()

and

n (r,t) = ngJo (\/;_T> et

The function J, islike asine function with decreasing amplitude and variable wavel ength.

The first zero occurs at argument 2.4048. Thusn will become zero at

; — 24048
N

This value of r takes the place of the wavdength in the previous solution, and again we see
that with 7 o< r2, the shortest length scal es decay the fastest.

2.4 General solution

When a plasmais set up, it first decays by recombination, and later diffusion becomes



dominant. When recombination dominates, n decreases relatively dowly, n = 1—#;‘}”—0
(equation 14), but once diffusion sets in, the decay is exponentid, n ~ exp (—t/7) with
T~ L2%/D.

Intheplot below, t isintermsof the timeconstant L2 / D, and we chose a%no = 2.(Blue
recombination, red diffusion, solid combination.)
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2.5 The whole enchilada

Including everything, (ionization, recombination, diffusion, and external sources/sinks) the
equation for evalution of the plasma density would be:

%—DVanQOn—anQ—i-S
Thisisabig mess! We dmost always approximate by including only the dominant effects.
For example, we can find a uniform equilibrium solution (8/0t = 0, V? = 0, S = 0) by
bal ancing ionization and recombination:

_ &
N = —

a



Thisis often a good solution in astronomical situations, but is not so good in laboratory
plasmas.

3 Diffusion as a random walk

The diffusion coefficient has dimensions

L2
D] = =
D] = =

In fact, for the unmagnetized plasma that we have discussed so far, we found (eg 11)
KT kTt2  (ver)” A2
e — T e—— —

D
m mT T T
where )\ is the mean free path and 7 is the mean time between collisions. Thus
(step)”

N ———— (15)
time per step

Here’s another way to look at this:
A particle hasadisplacement s; from collisioni — 1 to collision 7. Each displacement s;
is independent of dl the others, in magnitude and direction, but the average (rms) length is

< ‘52‘ >mms = A
the mean free path. i.e.

s Llxn.
)\:FZi'i (16)
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and its averagevalue < 5 > = 0. This happens because the direction of 5 is random. The
length of the total displacement (i.e. the total distance travelled), s, isgiven by:

s §-5= (i g) . (i gj_)

Jj=

and the mean value is

Now because the steps are independent,
<§;-8;> =0fori#j
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Thus

N
<> = <Z§’i"§"i> = N)\?
=1
where we used equation (16). Thus

ms:\/<s2 :\/N)\

The mean distance travelled is v/ N times the mean length of each step. Of course the
direction travelled is random, so the average displacement < §> = 0 as noted above.
We can now compute a diffusion speed of sorts:

distencetravelled vV )\ A

A
time Nt :7N7' :7;

Thus the longer the diff usion proceeds, the slower the speed.
The diffusion coefficient (15) is

(distance travelled)”
time

D =

4 Diffusion in magnetized plasmas

When the plasma is magnetized, the flux of particles along B isthe same asin an
unmagnetized plasma.  Putting the z—axisalong the magnetic field, we have:

F, =+unkE, — Da—n
0z
The particles gyrate around the field lines, and collisions abruptly change the velocity, and

cause abrupt jumps in the position of the guiding center:

original V

This picture showstha the step sizein the random wak isnow roughly equal to the Larmor
radius, and thus we should expect the diffusion coefficient for motion across B to be about

2
D—LL
T
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Here the ions diffuse faster, because the Larmor radius r;, = mv/eB ~ VkT'm/eB is
greater for the ions than for the electrons.
Now for the equations. The equation of motionis:

—

d _ ~ -
mn?: = ten (E—l— U X B) — kgTVn — mnvd
Once again welook for a steady state solution:
O=ien(E+ﬁx§> — kT Vn — mnuvi

Now ¥ appears in two terms. Let’s do it one component at atime

mnwv, = :I:en(EI—H)yB)—k:BTg—n
X
D on
: = *Tp(Ep+v,B) — —=—
v w(Ex + vy ) n Ox
and similarly
D on
y=*u(E, —v,B) — ——
. . . N #Ey — v B) n dy
Stuff this back into the equation for v,, :
D on D on
= +4ul|E +u(Ey, —v,B) — —=—| By | — ——
Vg M<m+|:.u'(y Vg ) nay:| 0) nax
D
ve (1+ p?B?) = +upE, +p’E,B — — @iuBa—” (17)
n \ Ox dy
But .
MB = WB = W:T
Also recall the expression for diamagnetic drift (plasfluid egn 15):
_kpTBxVn kTl ( dn On
vp = gB Bn  ¢B n 8yx az>
Thus
BDan _ kBTlﬁn_w eB kgT 1 0n
a nody T nody <Tmv eB n oy
2
= — (weT) Upg
Thus equation (17) gives:
1 2E 2 D on
e = ——— {*Tuk; c — c T~
v 1+(wc7')2{ pEy + (wer) B—l—(wT) vp nax}
(w.r)? S D, On
= fu, B, ExB L
- +14—(00(37)2 [( . )w—H}D} n Oz
with asimilar expression for v,. Here wewrote
D
(18)

e
14 (wer)?
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Thus )
JJ_ZZEMLE_"J_—&6LR+((JJC—T)2[JE+JD] (19)
n 14 (wer)

The usual perpendicular drifts, ¥ and ¥p, are lowed by collisionsif w.7 < 1. The
drifts parallel to the electric fid d and the density gradient are reduced by the magnetic field.
When w.m < 1 thefield has little effect on the plasma confinement, (diff usion is almost
the same as in the absence of ) but when w,r >> 1 the magnetic field significantly retards
diffusion and aids plasma confinement.

Now

eB )\mfp /\mfp
W T == =—

m v rr
and if w.r > 1, (Amip > ) the perpendicular diffusion coefficient (18) is approximately:
D kT kgT
2 = 2 = il
(weT) mv (wer) muwg
Inthisformwe can seethat D, o v : thishappensbecause collisions are necessary to move
the guiding center. In contrast, with B =0, D « 1/v : collisions slow the drift. Finally
we express D in terms of the Larmor radius, in the strong field limit (w.7 > 1).

2 2
1
D, ~ (T_L) 1_r
Vth T T
In this form we can see that the step sizein the random walk isindeed the Larmor radius.

DJ_&

41 Ambipolar diffusion across B

With a magnetic field, there are many different ways for the plasma to maintain quasi-
neutrality. Currentsacross B canbe balanced by currentsalong B. Herewe’ll consider one
simple example to show some of the features that can arise. A second example isin the
problems.

L et the plasma beinfiniteinthe z —direction (along E) and et thethickness perpendicul ar
to B be much greaer than the Debye length. Because the plasma is infinite in z, motions
parallel to the field cannot help to maintain the quasi-neutrdity, and we can set theion and
electron fluxes perpendicular to B equal. Then we have:

fn,ul’eE_l - Dl’aﬁL’n: ‘|"ﬂ,ul1iE_l - DL’iﬁln

Solvefor E : .
D, ;—D,.Vin

Bietpy; m

E=
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and then theflux is

F = nt=np, —= — -D,;Vin
Hypetpy, n

(Dii—=Die)py;—Di (:LLL,e + m,i) =
= VJ_?”L

My et iy,
;D e T+ D 7 e = =
= —ﬂLZ = = ML'VLTL:—DL,GVLTL
Hiet
whichisFick’slaw again. The ambipolar diffusion coefficient for this particular situation is

by Diet+ Diipg .

D,
“ Biet My
and in the strong field case (w.7 > 1),
kBTi (& kBT;;MZ em2
Drivre = MQ? Vi mwgyE T MeB? 'me2Bzc
kgT; Mm T;
= —apr e =T, Drenss)
e
and
em? m
Hie = 2Bz e~ eB2 ¢
But
[kpT.
Ve = NOV ~ NO
m
So

m kgT. no T.m
Pre™ s\ —— =gz VksTem = VTt

Then the ambipolar diffusion coefficient becomes

D . T
DL,(L _ LeHty ; (1 n ?’L)
Ky (1 + %%) N

D, T;
_ Die <1+F>~2DL,C

Lean >
L+ T M ¢

where in the last step we assumed T, ~ T;. Again the diffusion isdominated by the slower
species- this time the electrons.

Anocther example of ambipolar diffusion in a magnetized plasma is explored in the
problem set.

5 Diffusion in fully ionized plasmas

Collisions between like particles ( el ectron-electron or ion-ion collisons) giveriseto little
diffusion, since the center of mass of the system remains fixed. Thetwo guiding centers
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have equal and opposite displacements. (These callisions are important in establishing a
Maxwellian distribution, however. See Spitzer’s book ”Physics of Fully ionized gases” for
more detals.)

When partides of opposite charge collide, things get more interesting. Both guiding
centersmovein the same direction, leading to diffusion. In the diagram bd ow, both particles
reverse directions, and both guiding centers move downward. In amoreredistic situation,
the ion guiding center moveslittle, while the electron guiding center movesa lot. The big
ideaisthe same.

5.1  Coulomb collisions and resistivity

We areinterested in the electron-ion callisions, and in particular theterm P,, = — P,; , the
momentum transfer term tha appears in the equation of motion. We may write this term
(momentum transferred to el ectrons by ions) P.; &

Pei:mne (/D'i_ﬁe)yei (20)

We expect the collision frequency v.; to be proprtional to n; and also to the square of the
charge, because the Couolmb forceisinvolved. So we may write

Py=e*n® (¥ — ) (21)
where 7 is the specific resistivity. By analyzing the collisons, we hope to obtain an
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expression forn. Comparing equations (20) and (21), we see how v,; and n arerelaed:

e’n 9

Vei = =1 = Eqw7 (22)
m

52 Coulomb collisions

If an electron collides with an ion, M > m, we may assume that the ion remains fixed
during the collision. Theion exerts an impulsive force on the dectron.

i
) \ electron path

The force acting on the electron is
Zi 62
T dmegr?
and it acts for a time approximately ro /v where r( is the impact parameter (seefigure).
(This approximation gets better the faster the electron is travelling.) Then the impulse
delivered is

2 2
Zie~ ro e

I=A — - 7
(mv) dmegrd v 4megrov

For a 90° collision, A (mv) ~ mw, and so the impact parameter for a 90° collision is

approximately:
2
ro = Zi——
: _Amegmu :
(Note: you can also get this result by setting the initial KE approximatdy equal to the

electric PE at closest approach.) Thenthe collision cross section is

e? 2
o= 777“(2, =7 Zi—Q
dmegmu

and the callison frequency is

e? 2o Z2et
ei = N0V =My L || = e e 23
Y Miov = v < 47T50m1)2) v3 167edm? (23)
and with v? ~ kT /m,
i z2e!
n Ze (24)

Vei = —_—
(KT.)*/? 16med/m
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and (equation 22)

_ Vei M n; Zfe‘l_
= gow?  mee? (KT, )/* 16mey/m
e (25)

16722 (KT.)*

where we used the fact that n, = Z;n;.

Although this calculation is very rough, it capturesthe major features of the exact result.
(See Jackson Chapter 13). In fact, many small angle collisions prove to be more important
than the large angle collisions we considered. To account for these, we multiply by afactor

In A, where
A= D 50kT 87T€OkT EUkJT
\/ e2n, Z;e? Ne Z; 63
istheratio of the Debye Iength to the impact parameter for a 90° callision. (T he reason
for thisis that since the electric fields are shidded at distances greaer than A\ p, thatis an

effective upper limit to the impact parameter. ) Then theresistivity is:
1/2

_ Zie*m
1672 (kT,)*/?

Ignoring the weak dependence in In A, theresistivity isindependent of the plasma density.
The exact expression forn is

(26)

1 7.e2ml/2
i L LAY (20)
3 (4meg)” (2kT,)
which differsfrom our approximate value by a factor

16
3V2m
At a temperature kT ~ 100 eV, equation (27) gives
16,/7 (1.6 x 1079 C)” (9 x 1073 kg) /% (9 x 10° N -m2/C?)’ -
n = n
3(2 %100 x 1.6 x 10-19 J)%/2
N2 m?
_ -7 g
= 1 x1077/kg = A
Now since 1 J=1N-m=1kgm?/s?, the units are:

kg'/? - kg!/2-md/s  kg-m?

=213

c’ C’-s
We expect resistivity to be 2-m.
\Y Js kg - m?
Q- M==—-m===-m=
A ccC C-s

and so it checks. Thevalue 10~7 Q-m iscomparable to that of some metals, e.g. steel (see
LB pg 851).
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53 Ohm’s law

The equation of motion for an electron in an unmagnetized plasma, taking collisions into
acoount, becomes:
OUe

;o Lo
mn=—— = —enk + P,;

Assuming the ions reman immobile, the current density is

J = —nev,

In asteady state, % = 0, using equation (21) with ¢; = 0,

enE = .ﬁei =¢e*n? (=) m
= njen
and thus B
E=nj (28)

whichis Ohm’slaw with the usual definition of resistivity.

Since 7 is independent of the plasma density, so is the current. This might seem like
an odd result. The current should increase as n. increases, but the drag increases as n;
increases. Thushigher n; decreasesv.. And because of quasi-neutrality, n; = n..

Compare theresult for aweakly ionized plasma, where (equation 7)

3 = —eunﬁ
and the current density is proportional to n. but the drag is proportional to ng.

Since the resistivity is strongly temperature dependent, < 7'-3/2, a cold plasma is
very resistive. Asthe plasmais heated, itsresistance decreases. This isthe opposite of the
effect we expect in most metals. This meansthat we cannot eff ectively use ohmic heating to
raise the plasmatemperature. Asthetemperature rises, the heating becomes | ess effective
Practicdly, the temperature limit we can achieve by thisprocessisabout 1 keV.

Since the collision frequency is proportional to 1/v3, (equation 23), fast electrons make
fewer collisions. Thus the fastest electrons effectively carry the current. This dependence
also leads to an effect called dectron runavay. When the dectric field is turned on, some
electrons in the tail of the Maxwellian happen to be moving fast in the direction opposite E .
These electrons are now accel erated to even higher speeds, and consequently make very few
collisions, and thus continue to accelerate to even higher speeds. If E is large enough, there
are el ectrons that never make another collision. They form abeam of runaway electrons.

How large an electric field do we need? We want to accelerate to a speed of order
/KT /m in atimelessthan one collision time. Thus

| kT

iETC > _—

m m
vVEkTm

e
KI'm n; Zfe‘*_
e (kT,)? 16medv/m

Ve
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ne Z;e3

kT, 167e?

Since Eqir < 1/, and current heats the plasma, (up to apoint), electron runaway occurs
relatively easily as Fi; decreasesto meet the applied E.

crit =
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