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Let’s put a point charge q into a plasma. For simplicity, we’ll make it an
hydrogen plasma, with ne = ni everywhere in the unperturbed state (before q
is introduced.) (Remember— the plasma must be neutral in the unperturbed
state.) Let’s also suppose q is positive. When the charge is introduced, it
attracts electrons toward itself and repels ions. However, because the ion
mass is much greater than the electron mass, the electrons accelerate much
faster. Thus to first order we may assume that the electrons move until
equilibrium is established. The ions remain as they were. At this point we
have:

² Electrostatic potential φ (r) . (With only a single charge, we have spher-
ical symmetry and thus φ is a function of r but not the angles θ and
φ.)

² Undisturbed ions of density n0 (constant)

² Electrons with density ne (r) = n0 + n1 (r) .

² The distribution function for the electrons is modified because the elec-
tron energy is a¤ected by the electrostatic potential. The Boltzmann
factor e¡E/kT becomes
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Thus we can write the electron density as
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where, as expected, ne ¡! n0 at infinity, where φ ! 0.
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Now we proceed by writing Poisson’s equation:
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where we used the fact that φ has spherical symmetry. Equation (1) is a
messy, non-linear di¤erential equation for φ. But we can simplify by noting
that the potential is expected to get small very quickly as we move away
from the point charge — much faster than the 1/r dependence we’d get in
vacuum, because of the shielding by the plasma electrons. Thus we expand
the exponential to get:

¡ 1

r2
∂

∂r

µ
r2

∂φ

∂r

¶
=

e

ε0
n0

Ã
1¡

"
1 +

eφ

kT
+
1

2

µ
eφ

kT

¶2

+ ¢ ¢ ¢
#!

1

r2
∂

∂r

µ
r2

∂φ

∂r

¶
=

en0
ε0

eφ

kT
+ ¢ ¢ ¢

or, to first order:
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Looking at the physical dimensions in this equation, we see that the quantity

ε0kT

e2n0

must have the dimensions of length squared, and the length so defined is
expected to play an important role in the solution. Let’s give it a name

λ =

r
ε0kT

e2n0
(3)

Equation (2) is expected to give the correct solution for the potential away
from the point charge. At the position of the point charge the delta function
in equation (1) dominates everything else. Thus very near the charge we
expect the solution to be of the usual form:

φ ( near r = 0) =
q

4πε0r
(4)
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The easiest way to proceed is to write the di¤erential operator in its
alternate form:
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(you should convince yourself of this identity) so that the di¤erential equation
becomes:

∂2
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(rφ) =
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an exponential equation for the function rφ, with solution

rφ = A exp
³
¡ r

λ

´

and thus
φ (r) =

A

r
e¡r/λ

To obtain consistency with the solution (4) near the origin, we must take
A = q

4πε0
, giving the final solution for the potential:

φ (r) =
q

4πε0r
e¡r/λ (5)

The potential drops to zero exponentially. The plasma beyond a distance
λ is essentially shielded from the e¤ects of the charge. We’ll now give this
length its usual name λD¡ the Debye length.

The plot shows the scaled potential φ/φ0 versus the scaled length ρ/λD ,
where φ0 = q/ (4πε0λD) is the (vacuum) point charge potential at a distance
of λD from the charge.
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Numerically the Debye length for the plasma (equation 3) is,

λD '
r

kT in eV
n in cm¡3740 cm

We should not expect to find appreciable charge imbalance or electric fields
existing in a plasma over regions greater in extent than λD . Thus for a
system to be quasi-neutral the typical dimension of the system must be much
larger than λD. The Debye length decreases as n increases because there are
more charges per unit volume to provide the shielding, and increases with T
because the particles have greater energy and so can remain, on average, at
greater distance from the charge.

In plasmas, Poisson’s equation is not generally very useful for finding
electric fields on scales greater than λD . Instead, we often find ~E by other
means, and then use Poisson’s equation to find the resulting small charge
imbalance.

A second condition for a good plasma, one that can successfully be ana-
lyzed by computing averages over the particles, and one that exhibits collec-
tive behavior, is that a volume of order λ3D contains a very large number of
particles. The condition is usually stated in terms of the number of particles
in a debye sphere, ND =

4
3πn0λ

3
D . We require

lnND À 1
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Numerically,

ND =
(kT in eV)3/2p

n in cm¡3 1.7 £ 109

showing once again that good plasmas have high temperatures and/or low
densities.

Example. The x-ray emitting gas in clusters of galaxies has n » 10¡3

cm¡3 and T » 10 keV. Thus for this plasma

λD »
r
104

10¡3
740 cm = 2.3 £ 106 cm

which should be compared with a typical scale length L in this system of
about 1022 cm. Thus λD ¿ L. The number of particles in a Debye sphere
is

ND =
(104)

3/2

p
10¡3

1.7 £ 109 = 5. 4 £ 1016

and thus
lnND = ln5. 4£ 1016 = 38. 5

which is indeed much greater than 1. Thus this system is a good plasma
according to these two criteria. We will develop some additional criteria
shortly.
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