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An electron approaches a nucleus of charge Z. As a result of the en-
counter, the electron is accelerated and moves o¤ in a di¤erent direction.
In the absence of radiation, the electron would emerge from the encounter
at the same speed that it entered. But the radiated photon decreases the
electron’s KE.

We start by looking at encounters in which the electron’s direction of
motion changes very little. The electric force produces an impulse

I = e

Z
E?dt

perpendicular to the electron’s path. In this approximation the impulse
along the path is zero. The electric field component we need is
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Let vt = b tan θ. Then
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Thus the electron’s momentum changes by an amount

¢p = I

The length of the encounter is approximately 2b/v, since the electric field
decreases rapidly once vt ¸ b. (This approximation gets better if the electron
moves relativistically.) Thus
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and the average acceleration is

a =
1

m

¢p

¢t
=

Ze2

mb2

and it occurs over the interval ¡¢t/2 < t <¢t/2. Thus the Fourier trans-
form is
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Thus, from the Larmor formula, the radiation spectrum is:
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At low frequencies, ω ¿ b/v, the spectrum is flat:
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At higher frequencies, ω À v/b, the emission oscillates wildly and is close to
zero. Converting to frequency ν, where ω = 2πν,
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Now we sum up over all the electrons. The total number of electrons passing
the ion between distances b and b+ db per second is nv2πbdb and thus
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The factor 1/4π appears because jν is the emission per steradian.
Now we need to ponder the limits of the integral. The logarithm diverges

at b = 0 and at b = 1, so there must be maximum and minimum values
of b. We already found bmax above: it is approximately 2πv/ν. Quantum
mechanical considerations determine bmin.
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Now this result still assumes only one ion interacting with all the electrons.
Of course, there are many ions. So accounting for interactions with all the
ions, we have:
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The last step is to integrate over the electron speed distribution- a Maxwellian
in a thermal plasma. The lower limit is not zero, because the electron cannot
radiate more than its own energy. Thus
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Then:
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This result is an approximation. Compare the exact result
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where g is the Gaunt factor. We have captured the correct dependence on
all the physical parameters. The ratio of the two expressions is
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It is also useful to look at the total energy radiated, as this leads to cooling
of the plasma. The electrons radiate, but collisions reestablish equilibrium
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The important features to notice are that P _ n2T 1/2.

Putting in numbers, we get

jν = 5.4£ 10¡39Z2neni

T 1/2
e¡hν/kTgff erg ¢ cm¡3 ¢ s¡1 ¢ Hz¡1 ¢ ster¡1

Averaging over cosmic abundances, we find

jν = 6.2£ 10¡39 n2e
T 1/2

e¡hν/kTgff erg ¢ cm¡3 ¢ s¡1 ¢ Hz¡1 ¢ ster¡1

And integrating over frequencies gives

P = 1.4£ 10¡27Z2neniT
1/2 erg ¢ cm¡3 ¢ s¡1

Astrophysical sites where Bremmstrahlung is an important emission mecha-
nism include HII regions (T » few £103K, so kT/h » 1.4£10¡16 erg/K£few£103
K/ 6.6£10¡27 erg¢s = 6£ 1013 Hz, so the emission is in the IR and the radio)
and clusters of galaxies (T »few£107 ¡ 108 K, emission in the x-ray.)

. The cooling time is

τ =
3
2 (ne+ ni) kT

P
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If T = 108 K and n = 10¡2 cm¡3, as in clusters, then τ = 1010 yr, the age of
the universe.
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