1 The two-body problem

Here we discuss the motion of two particles under their mutual gravitational
influence. The forces acting on the two bodies are:
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where R is the separation of the masses, 7,7 = 1,2 and j # ¢. Since no external
forces act on the system, the center of mass moves at constant velocity, so we
may choose our origin at the CM. The position of the CM is at a distance s
from the larger mass (call it M;) where

M.
§ = ———R
My + M,

Thus the polar coordinates of the two bodies with respect to this origin are
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To simplify, we introduce the reduced mass u :

MM,
B=n + 0,
so that L L
==—R and r, = —R
T1 M, T2 M,

Now we write the equation of motion for each body:

GM, M, .
——T

To solve these equations, first note that the torque about the CM is

T=FxF=0



and thus the angular momentum of each body about the CM remains constant.
Ml = M;r?6; = L; = constant

and we can solve for 6,
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The velocity and acceleration in polar coordinates are
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The theta component is zero, which confirms our previous result that L is con-
stant. The r-component gives
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Substituting in for 91', we have
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Next note that we expect the path to be described by a relation » = r (), so
we rewrite using
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Then the equation of motion becomes:
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Defining u; = 1/r;, we have
/ 1 /o 2.7
u; = __QTZ' = —ur;
and 5 1
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The equation of motion becomes:
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Now note the dimensions of the physical quantities are:
GM L L3
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and the angular momentum
L2
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and so )
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as required.
Equation (3) is easily solved:
d? Gu?M; G2 M;
— (w-==2) = (w5
dog L; L;
Gu?M;
i _L_?] = ACOS(9 —90)

Thus the solution is
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From this we see that r is a maximum when 6 — 8 = © and a minimum when
0@ = 6y. The path is a conic section with the major axis defined by 6 = 6,. We
may choose 6, = 0 for convenience.

Since the center of mass remains fixed, we have 62 = = + 61 and

M17’1 = MQTQ
My _L3Gu? My L3/Gy
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for all 6,. Thus, writing o = 42, the mass ratio, we have

L2
o (1 — Bycosfy) = L_g (1 + Bycosby)
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This implies that
L2 = OéLl (5)

and By = —B; = —B. We still need to find B.
The total energy is also conserved, and is most easily found at 7. Or rwin,
since at these points » = 0

L2 LiLo
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Then when particle 1 is at 7y max, 72 1S at 72 max
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If the system is bound (E < 0) the eccentricity is less than 1 and the path is an
ellipse.

In the limit My > M, Ly = aly < Ly and u ~ My, SO
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which agrees with equation E3.4 in Lea and Burke.
We may summarize our results for the path as:
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Putting our result for e back into equation (7), we have
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1.1 Period
The time needed to travel through an angle dé is dt = df/#. Thus the period is

2
df
r- [ 2

o 0
Mi 27
= —/ r2df
L; J,

2
_ o (al oAy,
Ly Jy 1+ ecosf
- 2
= %aQ (1_62)2/2 ; de
L ! 0 1+ecosb

We can do the integral by using the unit circle in the complex plane:
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The poles are at
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Since e < 1, both roots are real, but only one is inside the circle. The



residue is
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Thus the period is
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In this form we can see the dependence on a. In the limit My > M, we have
o=~ Ml and
2m .
T ~ 3/2
N

and we recover Kepler’s Law.
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Now let’s show the symmetry in the expression for T :

;o g (Mo 12
- T\ aE Gu2 M,
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1.2 Observations

We can observe the period of the system easily, but other quantities are harder.
Let’s rewrite the system energy in terms of the masses and observables, using

equation 12:
9 GM;p

Q;
MyM
T = =& &l gt
GM;u GM;pn
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If we have a visual binary and we know the distance to the system, we will have
a value for a;, and so we will be able to evaluate the following function of the
masses

Thus

My + M,
M2

If we have both a; and a5, then we can evaluate both masses.
For spectroscopic binaries we have only the velocities of one or both stars

along the line of sight.

plane of sky

\

to observer _
plane of orbit



= 7;sinfsina + r;0; cos 0 sina

where
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Lo,
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If we can observe both stars we can obtain the mass ratio,. since

If we can observe only one, say #1, then we observe the quantity

2

Z—2esin « (16)

We can usually obtain the eccentricity by fitting a model to the observed curve
of velocity versus time (sin 6; (¢)). We still need to express Lo in terms of ob-
servables. So use equation (8) in equation (15) to get:
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Thus

G2 M?u*T 21\3/2 L/3
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and therefore we can measure (egn 16)
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which is the same function of the masses that we found for visual binaries.

esin o

2 The three-body problem

We cannot solve this problem in general, so we look at the special case in which
the third body is much less massive than the first two. We’ll also specialize to
the case in which the first two bodies orbit each other in a circular path, so that
the angular velocity @ is constant. Then we can work in the rotating frame,
and the first two bodies are at rest in this frame. In this frame there are two
fictitious forces: the centrifugal force

Foont = —m@ x (& x 7)
and the Coriolis force
Feoriolis = —2md X ¥
Expanding the triple cross product, the centrifugal force may be written as

2,2
., . - mwer
Feent = mw?i= =V (— 5 >

where
mw2r2

2
is the exective potential energy associated with this force. The Coriolis force
may be neglected to first approximation if

Versr=—

v L wr

and we shall do so for now. Thus we may write the Lagrangian for a particle
moving in the rotating frame as

r :lmUQ n GMim . GM>m N mw?r?
2 1 T2 2
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where r; and r, are distances from the two masses and r is the distance from the
center of mass. We may simplify by putting the origin at the CM, and x—axis
along the line joining the two bodies. The distance between the two massive
bodies is R, Then the two bodies are at positions

M. M
2 and z, =R L

= —R_ —
1 M, + M, M, + M,

and

’ :%mv2 N GMym N G Mym N mw? (:c; + y?)
2

(mfx1)2+y2 (xfx2)2+y
where

27 2

T 372 (M2 \1/?
27Ta1/ (GHQ]\/IZ)
G (M, + Ms)
R3/2

Now write all coordinates in dimensionless form: i.e. x — z/R. Then the
potential is

VR a 1 (L+a) (@ +y?)
omi, . e T T e 2
(e+z) +o (e -1=) +o2
(17)

The small third body will be in equilibrium at points where VV = 0
Plot of equipotentials with M, /M = o =2

11



VR a 1 N (1 +a) (2?2 +y?)

- = +
T ) ) e
aa_‘;:_ a(IEJrSﬁ) — - (‘le_a) 3/2+$(1+a) (18)

e e [(eoa) e

and

%—Z:_ oy - . ty(l+a) (19

9 3/2 9 3/2
{<x+p+a) +y2} {(mﬁ) +y2}

So 0V/0y = 0 at y = 0 and then we also have 0V/0x = 0 at:
For z > a/(1+ )

« 1
= — =+z(1+a)=0
—_ —_—
(x+l+oz> (x_1+oz



— —_
For = <z <13,

o 1
- + s+z(l+a)=0

2
1
(.’l?-i— 1+o¢> (.’E - lia)

and for o < —=

e’ 1
| + +z(l+a)=0

2 2
(rerz) (o-m)

The dizerent values arise from the fact that the numerators in equation (18)
are distances and thus must be positive. Thus the points of stability are at:

—2(z— %)27 (z+ -:,})22 +3z (7 + -:,})22 (z— %)22 =0, Solution is: {z = 1.249}
—2(z—=2)"+(z+3)"+3z(z+ %) (z —2)”" =0, Solution is: {x = 0.23742}
+2(2—2)’+(z +3)°+3z (2 +2)* (x —2)* = 0, Solution is: {x = —1.136 4}
These points agree with the values read from the plot of the equipotential

surfaces.
51
55 ha AN B Tk R S A
/-""’e_.
5]
-10]
.15
Fora < 1:
« 1
— = — s+2(l+a) = 0
1
(“m) (Z—ﬁ
- fr(1+a) 0
_ — T a) =
(z+1-0a)® (z-0a)
« 1 «
7_27—2(1+2—)+x+1’a = 0
(z+1)7° = x

To zeroth order in « the solution is z = 1. Then let z = 1 + ¢, where ¢ is of

13



order a.

— 2<1+2L)+1+5+a = 0
(2+¢) (1+¢) 1+e¢
—%(1—5)—(1—25)(1+2a)+1—|—8+a =0
5
—ZOL+3E = 0
5
= -
N 12

Thus Lo is at 1 + -1555. To find the next point, we change one sign.

« 1
_ —= + s+z(l+a)=0
(6]
(x + m) (x - m)
The zeroth order solution (o« = 0) is x = —1. Again we look for a solution

x = —1+4¢e. We have to be very careful with the first term, so let’s go to second
order in « this time.

(1+ )
—a(l4+a)(z4+a@—-1))+04a)(@+1+za) +z(z+1+20)’ (@+a(z—1)° = 0

I
o

—a(z(l4+a)—a)’+@(1+a)+ 1)+ z(1+a)+1)@1+a)—a)

0 = —a(l+a)(z®+2az(z—1))+(1+a) ((x+1)2+2x(x+1)a+x2a2)
+x ((3:+1)2+2x(3:+1)a+a23:2) ($2+2a3: (z—1)+(z — 1)20z2)

= —a(l+a)z?—2%2z@z- 1)+ (14a) (@+ 1>+ 2 (z+1)a(l+a)+z%?

+zta + 62°a® + 42%a + 2° + 22* + 2° — 202 + za? — 62%a? — 22%«

0 = +22* + 2P+ 23+ 22+ 22+ 1 +dza+ 4P a—2ax3 + 42 o +62° a? — 623 a2 + H5xa?

Now setx = —1 +¢
0 = 1+2(5—1)+(5—1)2+(5—1)3+2(5—1)4+(5—1)5—2a((5—1)3—2(5—1)—2(5—1)5)

(e —1)a? (4(5—1)3+6(5— 1)4—6(5—1)2—1—5)
= 3¢® -3 +° — 20 (3— 9 +17% — 196 +10e* — 2:%) +o® (=1 + & — 18 4 38® — 26¢* + 6¢°)

As expected the terms in °a° have vanished. Gathering terms in powers of

0=—-a?—6a+ac(18+a)+---
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Thus

a—+6 1 «
I
¢ Sra_ 13@t0 13

L,
= =4 =a

397

and

1+1—0—1 2+a
T =— -4 —a=—=4+=
3 27 3 27

Now for the last one:

ol 1
+ s +2z(1+a)=0

2
(t+s) (o)

As before, the zeroth order solution is —1land we have to be especially careful
finding the correction. The only dicerence is the sign of the leading term. Thus

0 = +a(l+a)(z?+2az(z—-1)+(1+a) ((3:+1)2+23:(x+1)a +x2a2)
+x ((z +1)° +2z(z+1)a +a2$2) (:c2 +2az (z — 1)+ (z —1)? az)
and

These points are on either side of the small mass.
The other values of y are given by

« 1
— — — 3/2+(1+a):0

2 3/2 2
[(yﬁ— 1J+O() +y2} {(m—lj—a) —l—y?}
Together with the z—relation
° (o) ()
B 5 3/2 5 3/2
{(x—‘- Hﬁ) —l—yz} [(m—ﬁ) +y2}

Let’s look again at the special cases a =2 and o« < 1. First a =2:

2
(@) +2]” [@-37+ e

(black curve) and

+z(14+a)=0

— +3=0




(red curve)

There are two intersections, symmetrically located about the x—axis.
The points that we have found are the five Lagrange points.
For o < 1 : The two equations are

« 1
- > — 55T (1+a)=0

(@+1-a+9]”  [@—a)?+v]

and
axr r —Q

- 32 57z Te(l+a)=0
{(mA+—1Af a)? +—y2}

Keeping first order in « :

= . + (14 ) 0
_ _ a) =
3/2 3/2
[(z+ 1= 20 (z+1) +y2} (2% = 20z + y?]
« 1 [ 3ax
- - — |1+ +(14+a) = 0
3/2 2 213/2 2+ 2:|
T
1 1 3x
1—+a!1 - = l = ({20)
(a2 +y2)"? | {(x+ 1%+ y2} R (@24 y2) /2J
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The zeroth order result isr = 1. For a < 1, the second equation becomes:

ax T — « + 3ax (4 ) - 0
[( +1)%+ 2]3/2 w24y L 2y e =
x y
aT T— 3ax?
- - - +z(l+a) = 0
{(x +1)" + 92}3/2 @2+ 2 @242
(1 1 >+ x . 1 322 \ _21)
T - —_— al|x— —
ER A T e L )

which gives r =1 or z = 0 as the zeroth order solution. Then letr =1+ ¢ in
equation (20) to get

1 ( 1 (1+e)cos€\
———ta|l- = — 3 - -0
(1+e) [(1+5)2+2(1+5)0050+1} (1+e)
1
e+ 17—3/273(30s0 = 0
[14 2cosf]
and so
o 1
e=—=—|1—-=——————=—3cosf (22)
3 ( 2+ 2cos9]d/2 )

Now we expand equation (21) to first order in « and ¢ :

cosf
1 + cos0]/?

3ecosf+ al cost— +1-3cos?0| =0
23/2 ]

and then insert relation (22) for ¢:

1 0
—acosf 1——3/2—3(3080 + « COSO—LW+1—3COS29 —
[2 4+ 2cos 0] [2 +2cosd]

B cosf L1 o=
\/5(1—1— cos9)3/2

cosf = \/5(14—(:059)3/2
cos> = 2(1+cos€)3:2+6cos€+6cos29+200839

Thus cosf satisfies the equation

0 = 2+6cosf+ 5cos? 0+ 2cosd
= (2cosf + 1) (cos® 0 +2cos 0 + 2)
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The real solution is cos§ = —1/2, or § = 120° . Finally we put this result into

equation (22) to get
-3 -1 2

2
Thus the last two Lagrange points are at

(&3 o
r=1l-%, =120

These points are 60° ahead of and behind the smaller mass.

Lsg 1'

2.1 Stability of the Lagrange points.

We can see from the figure on page 12 that L, and Ls are potential minima,
and thus stable, while L,, L, and L3 are saddle points and thus unstable.

To analyze the stability, we need to include the Coriolis force. We will need
to include a velocity dependent potential. Then Lagrange’s equations take the

form
iaﬁ (Z,9) B oL (Z,7)

dt avi 8951 -
Let’s reacall what happens in E&M. The magnetic force is

F=qtxB
where L
B=VxA
S0
F = qﬁx(ﬁxﬁf)
= q{vjaixiflj—l—(ﬁ-vq)fl} (23)



We define the velocity-dependent potential as

—qA -7
so that ov
_— — A
00; qAa;
and d 0 0 0 0
Vv
dt (‘av) - <8t +”jaxj> aAi = ”jaquA"
then
d ov ov 0 0
7 (8—%) +8_Ii = UjaquAi +q3_a?inAj

0 0]
Uj (%sjq ! + qu 83:, J

in agreement with equation (23).
Now in our case the Coriolis force is

Feor=—mid XU =mi xd

where

(cf Lea problem 1.5). Thus our potential is now

a) (xQ 4 y2)

YR e 1 0+
GmM, N\, N\, 2
(33 +1+—a) +y <$—1+—a) +y
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