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1 The wave equations
In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and

44):
1

c2
∂2 �A

∂t2
−∇2 �A = µ0�j (1)

and
1

c2
∂2Φ

∂t2
−∇2Φ = ρ

ε0
(2)

The Gauge condition is (Notes 1 eqn 42):

�∇ · �A+ 1

c2
∂Φ

∂t
= 0 (3)

In Coulomb Gauge we have the Gauge condition:
�∇ · �A = 0 (4)

which leads to the equations (Notes 1, eqn between 43 and 44, with �∇ · �A = 0 )
∇2Φ = − ρ

ε0
(5)

and (Notes 1, eqn 41, with �∇ · �A = 0)
1

c2
∂2 �A

∂t2
−∇2 �A = µ0�j −

1

c2
�∇∂Φ

∂t
(6)

2 Longitudinal and transverse currents

The Coulomb Gauge wave equation for �A (6) is awkward because it contains the scalar
potential Φ. We can eliminate the potential Φ to obtain an equation for �A alone. First we
separate the current into two pieces, called the longitudinal current �Jc and the transverse
current �Jt :

�J = �Jc + �Jt
where

�∇ · �Jt = 0 (7)
and

�∇× �Jc = 0 (8)
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(Basically we are applying the Helmholtz theorem. We can always do this: See Lea
Appendix II). From charge conservation (Notes 1 eqn 7):

�∇ · �J + ∂ρ

∂t
= 0

and using equation (5) to eliminate ρ, this becomes:

�∇ · �Jc = − ∂

∂t
−ε0∇2Φ = �∇ · ε0

∂

∂t
�∇Φ

From (8), �Jc is the gradient of a scalar, so

�Jc = ε0�∇ ∂

∂t
Φ (9)

Using equation (9) in equation (6), we have:

∇2 �A− 1

c2
∂2 �A

∂t2
= −µ0 �J − ε0�∇∂Φ

∂t

= −µ0 �J − �Jc = −µ0 �Jt (10)

In the Coulomb Gauge, the transverse current �Jt is the source of �A.

We can also use result (9) to express �Jl in terms of �J. Since equation (5) is the same as
in the static case, the solution is also the same (Notes 1 eqn 29). Thus

�Jc (�x, t) =
1

4π
�∇ ∂

∂t

ρ (�x3, t)
|�x− �x3|d

3x3

=
1

4π
�∇

∂
∂tρ (�x

3, t)
|�x− �x3| d

3x3

�Jc (�x, t) = − 1
4π

�∇
�∇3 · �J (�x3)
|�x− �x3| d

3x3 (11)

where we used charge conservation in the last step. We can also express �Jt in terms of �J as
follows, using (11),

�Jt = �J − �Jc = �J +
1

4π
�∇

�∇3 · �J
|�x− �x3|d

3x3

Let’s work on the integral. We start with an "integration by parts":
�∇3 · �J (�x3)
|�x− �x3| d

3x3 = �∇3 ·
�J (�x3)
|�x− �x3| d3x3 − �J · �∇3 1

|�x− �x3| d
3x3

=
S∞

�J (�x3) · n̂
|�x− �x3| d

2x3 + �J · �∇ 1

|�x− �x3| d
3x3 (Notes 1 eqn 19)

= 0 + �∇ ·
�J (�x3)
|�x− �x3|d

3x3
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The surface integral is zero provided that �J is localized. Then

�Jt (�x, t) = �J (�x, t) +
1

4π
�∇ �∇ ·

�J (�x3, t)
|�x− �x3| d

3x3

= �J +
1

4π
�∇× �∇×

�J (�x3, t)
|�x− �x3|d

3x3 +∇2
�J (�x3, t)
|�x− �x3|d

3x3

= �J +
1

4π
�∇× �∇×

�J (�x3, t)
|�x− �x3|d

3x3 + �J ∇2 1

|�x− �x3|d
3x3

= �J +
1

4π
�∇× �∇×

�J (�x3, t)
|�x− �x3|d

3x3 + �J [−4πδ (�x− �x3)] d3x3

�Jt (�x, t) =
1

4π
�∇× �∇×

�J (�x3, t)
|�x− �x3| d

3x3 (12)

We still have the rather unphysical result from equation (5) that Φ changes
instantaneously everywhere as ρ changes. In classical physics the potential is just a
mathematical construct that we use to find the fields, and it can be shown (e.g. J prob 6.20)
that �E is causal even though Φ is not.

3 The Green’s function
With either gauge we have a wave equation of the form

∇2Φ− 1

c2
∂2Φ

∂t2
= (source)

where Φ may be either the scalar potential (in Lorentz Gauge) or a Cartesian component
of �A. (In Coulomb Gauge the scalar potential is found using the methods we have already
developed for the static case.) The corresponding Green’s function problem is:

∇2G (�x, t;�x3, t3)− 1

c2
∂2G

∂t2
= −4πδ (�x− �x3) δ (t− t3) (13)

where the source is now a unit event located at position �x = �x3 and happening at time t = t3.
As usual, the primed coordinates �x3, t3, are considered fixed for the moment. To solve this
equation we first Fourier transform in time (see, eg, Lea pg 503):

G (�x, t; �x3, t3) =
1√
2π

∞

−∞
G (�x,ω; �x3, t3) e−iωtdω

and the transformed equation (13) becomes

∇2 + ω2

c2
G (�x,ω; �x3, t3) = −4π 1√

2π

∞

−∞
δ (�x− �x3) δ (t− t3) eiωtdt

= − 4π√
2π

δ (�x− �x3) eiωt
3
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So let G (�x,ω;�x3, t3) = g (�x, �x3) eiωt
3
/
√
2π and then g satisfies the equation

∇2 + k2 g = −4πδ (�x− �x3) (14)
where k = ω/c. In free space without boundaries, g must be a function only ofR = |�x− �x3|
and must posess spherical symmetry about the source point1. Thus in spherical coordinates
with origin at the point P 3 with coordinates �x3, we can write:

1

R

d2

dR2
(Rg) + k2g = −4πδ �R (15)

For �R 9= 0, the right hand side is zero. Then the function Rg satisfies the exponential
equation, and the solution is:

Rg = AeikR +Be−ikR

g =
1

R
AeikR +Be−ikR R 9= 0 (16)

Near the origin, where the delta-function contributes, the second term on the LHS of (14)
is negligible compared with the first, and equation (14) becomes:

∇2g * −4πδ (�x− �x3)

We recognize that this equation has the solution (Lea eqn 6.26)

g =
1

R
This is consistent with equation (16) as R→ 0, provided that

A+B = 1

Thus we have the solution

G (�x,ω; �x3, t3) =
1√
2πR

AeikR + (1−A) e−ikR eiωt
3

You should convince yourself that this solution is correct by differentiating and stuffing back
into equation (15).
Now we do the inverse transform:

G (�x, t;�x3, t3) =
1√
2π

∞

−∞

1√
2πR

AeikR +Be−ikR eiωt
3
e−iωtdω

=
1

2πR

∞

−∞
{A exp [iω (R/c+ t3 − t)] +B exp [iω (−R/c+ t3 − t)]}dω

=
A

R
δ [t3 − (t−R/c)] + B

R
δ [t3 − (t+R/c)] (17)

where we used Lea eqn 6.16. The second term is usually rejected (take B ≡ 0 and thus
A = 1) because it predicts a response to an event occurring in the future. However,
Feynman and Wheeler2 have proposed a theory in which both terms are kept. They show
that this theory can be consistent with observed causality provided that the universe is
perfectly absorbing in the infinite future. (This now appears unlikely.) The time t − R/c

1 Note that the operator∇2 + k2 is spherically symmetric.
2 Reviews of Modern Physics, 1949, 21, 425
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that appears in the first term is called the retarded time tret. Thus we take

G (�x, t; �x3, t3) =
1

R
δ [t3 − (t−R/c)] = 1

R
δ (t3 − tret) (18)

Causality (an event cannot precede its cause) requires that the symmetry of this Green’s
function is:

G (�x, t;�x3, t3) = G (�x3,−t3; �x,−t)
(See Morse and Feshbach Ch 7 pg 834-835). and also

G (�x,−∞; �x3, t3) = 0
and

G (�x, t; �x3, t3) = 0 for t < t3

4 The potentials
Now that we have the Green’s function (18), we can solve our original equations.

Modifying eqn 1.44 in Jackson ("Formal" Notes eqn 7) to include time dependence, and
with S →∞, we get an integral over a volume in space-time rather than just space:

Φ (�x, t) =
1

4πε0
ρ (�x3, t3)G (�x, t; �x3, t3) dt3d3�x3

Thus, inserting (18), we have

Φ (�x, t) =
1

4πε0

ρ (�x3, t3)
R

δ (t3 − tret) dt3d3�x3 (19)

=
1

4πε0

ρ (�x3, tret)
R (tret)

d3�x3 (20)

in Lorentz Gauge, and similarly:

�A (�x, t) =
µ0
4π

�j (�x3, tret)
R (tret)

d3x3 (21)

Notice that these equations have the same form as the static potentials (equations 1.17 and
5.32 in Jackson, eqns 21 and 29 in Notes 1), but we must evaluate the source and the distance
R at the retarded time. This allows for the time for a signal to travel from the source to the
observer at speed c. Note that tret is a function of both �x and �x3, as well as t.
Similar equations hold in Coulomb Gauge. The scalar potential (Notes 1 eqn. 29)

changes instantaneously as ρ changes, and the vector potential involves the transverse
current only in equation (21). In spite of this peculiarity, the fields �E and �B are causal.
(See problem 6.20 which demonstrates this in a relatively simple case. This problem may be
"relatively" simple, but it is not easy.)
When spatial boundaries are present the analysis is more complicated. We must use the

same kind of techniques that we used in the static case, expanding G in eigenfunctions.
However, the vector nature of �A makes the problem much harder. (See Chapter 9 sections
6-12.)
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5 Radiation from a moving point charge

5.1 The Lienard-Wiechert potentials

Here the source is a point charge q with position �r (t) that is moving with velocity �v (t) . The
charge and current densities are

ρ (�x,t) = qδ [�x− �r (t)]

and
�j (�x,t) = q�vδ [�x− �r (t)]

Because the source terms are delta-functions, it turns out to be easier to back up one step.
Then from equation (19), we have:

Φ (�x, t) =
1

4πε0

qδ [�x3 − �r (t3)]
R

δ (t3 − tret) dt3d3x3

We do the integral over the spatial coordinates first. Then

Φ (�x,t) =
1

4πε0
q
δ [t3 +R (t3) /c− t]

R (t3)
dt3

where R (t3) = |�x− �r (t3)| . To do the t3 integral, we must re-express the delta-function.
Recall (Lea eqn 6.10)

δ [f (x)] =
i

1

|f 3 (xi)|δ (x− xi) (22)

where f (xi) = 0. In this case:

f (t3) = t3 +
R (t3)
c
− t

and, since �v = d�r/dt,

f 3 (t3) = 1 +
1

c

dR

dt3
= 1 +

1

c

d

dt3
[�x− �r (t3)] · [�x− �r (t3)]

= 1 +
1

c

[�x− �r (t3)]
|�x− �r (t3)| ·

d

dt3
[�x− �r (t3)]

= 1− �v · [�x− �r (t3)]
c |�x− �r (t3)| = 1−

�v · �R
cR

= 1− �v · R̂
c

(23)

The derivative f 3 is always positive, since v < c. The function f is zero when t3 equals the
solution of the equation tret = t−R (tret) /c. A space-time diagram shows this most easily:
tret is found from the intersection of the backward light cone from P with the charge’s world
line. There is only one root.
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Thus, evaluating the integral using (22) and (23), we get:

Φ (�x,t) =
1

4πε0
q

δ (t3 − tret)
R (t3) 1− �v·�R

cR

dt3 =
1

4πε0

q

R 1− �v·�R
cR

tret

(24)

and similarly

�A (�x, t) =
µ0
4π

q�v

R 1− �v·�R
cR tret

(25)

These are the Lienhard-Wiechert potentials. It is convenient to use the shorthand

rv = R 1− �v · �R
cR

= R− �v · �R
c

(26)

so that
�A (�x, t) =

µ0
4π

q�v

rv tret

=
�v

c2
Φ (27)
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5.2 Calculating the fields

The fields are found using the usual relations (notes 1 eqns 40 and 20)

�E = −�∇Φ− ∂ �A

∂t
and

�B = �∇× �A
But our expressions for the potentials are in terms of �x and tret, not �x and t, so we have to
be very careful in taking the partial derivatives. We can put the origin at the instantaneous
position of the charge to simplify things. Then, using spherical coordinates, R = r. Our
potential may be written:

Φ (�x, t) ≡ Ψ (�x,tret)
A differential change in the potential due to a change in the coordinates is

dΦ = �∇Φ
const t

· d�x+ ∂Φ

∂t
dt ≡ �∇Ψ

const tret
· d�x+ ∂Ψ

∂tret
dtret = dΨ

But dtret = dt− dr/c, so
�∇Φ

const t
· d�x+ ∂Φ

∂t
dt ≡ �∇Ψ

const tret
· d�x− ∂Ψ

∂tret

dr

c
+

∂Ψ

∂tret
dt

This must be true for any d�x and dt. Comparing the coefficient of dr on both sides, we see
that the r−component of �∇Φmust be modified:

∂Φ

∂r const t
=

∂Ψ

∂r const tret
−1
c

∂Ψ

∂tret
(28)

With this result, we can calculate the fields:

�∇Φ = 1

4πε0
�∇ q
rv
= − 1

4πε0

q

r2v
�∇rv (29)

where

�∇rv = ∂

∂r
r − �r · �v

c
r̂ +

θ̂

r

∂

∂θ
r − �r · �v

c
+

φ̂

r sin θ

∂

∂φ
r − �r · �v

c

We can choose our axes with polar axis along the instantaneous direction of �v. Then
�r · �v = rv cos θ, and

�∇rv = 1− v
c
cos θ r̂ +

θ̂

r
r
v

c
sin θ

In this coordinate system
�v = vẑ = v r̂ cos θ − θ̂ sin θ

so
�∇rv = r̂ − �v

c
(30)

In the non-relativistic limit, v/c� 1, to zeroth order in v/c, this becomes �∇rv = r̂.We are
also going to need

∂rv
∂t

= −�r · �a
c

(31)
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Then, using (27), we have

�E = − �∇Φ
const tret

+
1

c

∂Φ

∂t
r̂ − ∂ �A

∂t

= − �∇Φ
const tret

+
1

c

∂Φ

∂t
r̂ − 1

c2
∂

∂t
(�vΦ)

= − �∇Φ
const tret

+
1

c

∂Φ

∂t
r̂ − �v

c
− Φ
c2

∂

∂t
�v

Inserting our results (29) , (30) and (31), we get

�E =
1

4πε0

q

r2v
r̂ − �v

c
−(r̂ − �v/c)

c

q

r2v
−�r · �a

c
− q

rv

�a

c2

Combining the terms that involve the acceleration, we have

�E =
1

4πε0

q

r2v
r̂ − �v

c
+

q

4πε0rvc2
(r̂ − �v/c) (r̂ · �a)− �a (1− r̂ · �v/c)

(1− r̂ · �v/c) (32)

=
q

4πε0r2v
r̂ − �v

c
+

µ0q

4πrv (1− r̂ · �v/c) r̂ × r̂ − �v

c
× �a (33)

Taking the non-relativistic limit3 v/c� 1, (33) becomes:

�E =
1

4πε0

q

r2
r̂ +

q

c2
[r̂ × (r̂ ×�a)]

r

The first term is the usual Coulomb field which goes as 1/r2. The second term depends on
the acceleration �a: this is the radiation field.

�Erad =
µ0
4π

q

r
[r̂ × (r̂ × �a)] (34)

This term decreases as 1/r and dominates at large r. Note also that �Erad is perpendicular to
r̂.
Next let’s calculate the magnetic field:
�B = �∇× �A

const t

= �∇
const tret

− 1
c
r̂
∂

∂t
× µ0
4π

q�v

rv

�B =
µ0
4π
q �∇ 1

rv
× �v − 1

c
r̂ × �a

rv
− �v

r2v

∂rv
∂t

= −µ0
4π
q
1

r2v
r̂ − �v

c
× �v − r̂

c
× �a

rv
+

�v

r2v

�r · �a
c

=
µ0q

4πr2v
�v × r̂ − µ0

4π

q/c

rv (1− �v · r̂/c) (r̂ × �a) (1− �v · r̂/c) + (r̂ × �v)
r̂ · �a
c

3 Eqn (33) is not quite correct if v/c is not small, as we have not done a correct
relativistic treatment of time. We are missing some factors of γ and 1− �β · r̂.
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We can simpify this result using (32) for �Erad and the fact that r̂ × r̂ ≡ 0.
�B =

µ0q

4πr2v
�v × r̂ + µ0

4π

q

rv (1− �v · r̂/c)
r̂ × [(r̂ − �v/c) (r̂ · �a)− �a (1− r̂ · �v/c)]

c
(35)

= �BB-S + r̂ × �Erad/c

In the limit v/c� 1, the first term, which goes as 1/r2, is the usual Biot-Savart law result .
The second term, which goes as 1/r , is the radiation field. Notice that

�Brad = r̂ × �Erad/c

as expected for an EM wave in free space. In the non-relativistic limit,
�Brad =

µ0
4π

q

rc
�a× r̂ (36)

5.3 Radiated Power

The Poynting flux for the radiation field is:

�S =
1

µ0
�Erad × �Brad =

1

µ0
�Erad × r̂ × �Erad

c

=
E2rad
µ0c

r̂ (37)

where from equation (34):

Erad =
µ0
4π

q

r
a |sin θ| = 1

4πε0

q

rc2
a |sin θ|

and θ is the angle between �a and r̂. Thus, in the non-relativistic limit

S =
1

µ0c

1

4πε0

q

rc2
a sin θ

2

=
q2

(4π)2 ε0c3
a2

r2
sin2 θ

Notice that S ∝ 1/r2, the usual inverse square law for light. S is the power radiated per unit
area of wavefront, S = dP/dA. Writing dA in terms of solid angle, dA = r2dΩ, we find
the power radiated per unit solid angle is independent of distance:

dP

dΩ
= r2S =

q2a2

(4π)2 ε0c3
sin2 θ (38)

Finally the total power radiated is

P =
dP

dΩ
dΩ =

q2a2

(4π)2 ε0c3

2π

0

+1

−1
1− µ2 dφdµ

where as usual µ = cos θ. Thus

P =
q2a2

(4πε0) 2c3
µ− µ

3

3

+1

−1

P =
2

3

q2a2

4πε0c3
(39)

This result is called the Larmor formula.
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In the relativistic case, we use (33) in (37) to get:

�S =
1

µ0c
r̂

µ0q

4πrv (1− r̂ · �v/c) r̂ × r̂ − �v

c
× �a

2

and
dP

dΩ
=
1

c

µ0q
2

(4π)
2
(1− r̂ · �v/c)4 r̂ × r̂ − �v

c
× �a

2

The denominator (1− r̂ · �v/c)4 indicates that the radiation is beamed into a small cone
around the velocity vector when v/c→ 1. Note here that this derivation is not strictly correct
when v/c is not negligible, and it leads to the wrong power of (1− r̂ · �v/c) in the denomi-
nator. It does indicate qualitatively how the radiation is beamed. For the correct relativistic
derivation see Jackson Ch 14 or http://www.physics.sfsu.edu/~lea/courses/grad/radgen.PDF.

Example
A particle of charge q and massm is moving in the presence of a uniform magnetic field

�B = B0ẑ. Its speed v � c. Find the power radiated.
First we compute the acceleration:

�F = m�a = q�v × �B

so
�a =

q

m
�v × �B = − q

m
�B × �v = �ω × �v (40)

Only the component of �v perpendicular to �B contributes, and the motion is a circle with �a
pointing toward the center. If the component of �v parallel to �B is not zero, the motion is a
helix. vn remains unchanged and does not affect the radiation if v � c, so it will be ignored
from now on. (There are important beaming effects if v/c is NOT� 1.)

Choose coordinates as shown in the diagram above, and choose t = 0 when the particle is

11



on the x−axis. Then the angle χ between r̂ and �a is found from
r̂ · â = cosχ = sin θ cos (ωt− φ)

where
ω =

qB

m
is the cyclotron frequency (eqn 40). Thus from (38),

dP

dΩ
=

q2

(4π)
2
ε0c3

q

m
v⊥B0

2

1− sin2 θ cos2 (ωt− φ)

Taking the time average, we get

<
dP

dΩ
> =

q4 (v⊥B0)
2

m2 (4π)
2
ε0c3

1− sin
2 θ

2
=

q4B20K⊥
16π2ε0m3c3

1 + cos2 θ

whereK⊥ is the particle’s kinetic energy 1
2mv

2
⊥. Radiation is maximum along the direction

of �B, and minimum in the plane perpendicular to �B. The total power radiated is (39):

P =
2

3

q2

4πε0c3
q

m
v⊥B0

2

=
2

3

q4 (v⊥B0)
2

4πε0c3m2
=
q4B20K⊥
3πε0c3m3

The radiated power is proportional to the square of the magnetic field strength.
We can check the physical dimensions:

P =
q4µ0B

2
0

6πε0µ0m
2c

v⊥
c

2

=
q4cuB

3πε20 (mc
2)2

v⊥
c

2

Since the energy of a pair of point charges is

U =
q2

4πε0d

we have
P = (energy× length)2 length

time
energy
volume

1

(energy)2
=
energy
time

as required.
Things get much more interesting as v → c. Synchrotron radiation is discussed in J Ch

14 and also in http://www.physics.sfsu.edu/~lea/courses/grad/radiation.PDF.
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