Spherical harmonics 2020

1 Problems with spherical symmetry: spherical
harmonics

Suppose our potential problem has spherical boundaries. Then we would like
to solve the problem in spherical coordinates. Let’s look at Laplace’s equation
again.
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We apply the same techniques that we used in the rectangular problem; only
the details change. Look for a solution of the form

®=R(r)P(0) W(¢)

Then substituting in, and dividing by ®, we get:
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To separate out an equation for W (¢), multiply the whole equation by 72 sin? 6 :

sinQOQ 7"26—R —l—sin@2 sin@a—P l+i_82W_0
R or\  or a0 90 ) P W a6

Now the last term is a function of ¢ only, while the sum of the first two is
a function of r and 6 only. Thus if the solution is to satisfy the differential
equation for all values of r,0 and ¢, each of these two pieces must equal a
constant.

Now if our region of interest is the inside or outside of a complete sphere,
an increase of ¢ by any integer multiple of 27 corresponds to the same physical
point. Thus the function ® must have the same value for ¢ = ¢; and ¢ = ¢, +2,
that is, the function W must be periodic with period 27. We may achieve this
behavior if we choose the separation constant so that
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with m equal to an integer. Then the solutions are the periodic functions:
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The equation in r and 6 then becomes:
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Next, to separate the r and 6 dependences, we divide through by sin?6, to get:
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ROr ar sin 6 00 00 ) P sin?0
The first term is a function of r only while the sum of the last two is a function of
0 only. Thus again both pieces must be constant. The equation has separated.
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When working in spherical coordinates, changing variables to 1 = cos € is often
a useful trick. Then dp = —sin6df, and the §—equation becomes:

d dp m2
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Equation (2) is known as the associated Legendre equation. Let’s first tackle a
special case.

1.1 Problems with axisymmetry: the Legendre polynomi-
als

If the problem has rotational symmetry about the polar axis, then the function
W must be a constant (® is independent of ¢) and so m = 0. Then equation 2
simplifies:

%((1—;3)%)4#@:0 (3)

We can solve this Legendre equation by looking for a series solution!. The
singular points of the equation are at ;1 = +1, so we should be able to find a
solution about p = 0 of the form:

0
n=0

Substituting into the equation, we have:

io:n(n—l)an,u”_2 —in(n—1)anu"—2§:nanu”+k§:anu" =0
n=0 n=0 n=0 n=0

where each power of p must separately equal zero. The constant term in the
equation is:

k
2a0 + kag =0 = ay = —5a0

lcf Lea Chapter 3 section 3.3.



and the first power of y has coefficient:
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For all higher powers, every term in the equation contributes. Looking at u?,
setting m = p + 2 in the first term and n = p in the rest, we find

(p+2)(p+1)aps2 —p(p—1)a, —2pa, + ka, =0
and so the recursion relation is:

pp—1)+2p—k . pp+1)—k
(p+2)(p+1) Po+2)(p+1)

The first two relations we obtained can also be described by this formula with
p = 0 and p = 1 respectively. Since the recursion relation relates a,42 to ay,
the soutions are purely even (starting with ag) or purely odd (starting with aq).

The solution we have obtained is valid for —1 < g < 1, but the series does
not converge for ;4 = £1. This is a problem since y = +1 corresponds to § = 0
and p = —1 to # = 7. These points are on the polar axis where usually we
do not expect the potential to blow up. Thus we need a solution that remains
valid up to and including these points. We can solve the problem by choosing
the separation constant k so that the series terminates after a finite number of
terms. In particular, if we choose k to have the value

(4)

Gpt2 = Ap

E=1(+1)
for some integer [, then according to the recursion relation (4):

II+1)—1(1+1)
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ar+2 = aj

and so every succeeding a, for p > [ is also zero. The corresponding solution
is the Legendre Polynomial P, (1) . By convention, we choose ag (for even 1) or
aq (for odd 1) so that

P (1)=1 (5)

The recursion relation becomes:

p(p+1)—1(+1)
(p+2)(p+1)

Ap+2 = Qp (6)
The first few polynomials are:
[ = 0 : The only non-zero coefficient is ap which must equal 1 to make
Py (1) =1, so:
FPo(p) =1 (7)
[ =1: The only non-zero coefficient is a;, and again we must take a; =1 to
make P; (1) = 1. Thus:
Pr(p)=p (8)



—2x3
a2 = aop B = —3&0

and subsequent a,, are all zero. Then:
Py () = ag (1 —3p?)

and evaluating this at u = 1,we find
1
P2(1):ao(_2):1:>00:—§

Thus

Py () = 5 (31~ 1) )

Notice the pattern: we use the recursion relation to determine the non-zero
coefficients as multiples of the leading coefficient (ag or a1). Then we evaluate
the resulting polynomial at © = 1 and set the result equal to 1, thus determining
the value of the leading coefficient.

Let’s do one more:

[ = 3 : Applying the recursion relation (6) with [ = 3 we find:

Po, Pl, PQ, and P3



1.2 Solution for the potential

Now that we have the function of 6, let’s return to the potential problem and
solve for the function of . With the separation constant determined, equation

(1) becomes
% (ﬂ%—f) =Il(+1)R

Solutions to this equation are powers of r : R = rP where

O (20PN _ 0 (a po1y _ P = P
5 (r 87")_87“( prP N =p+1)r=1(1+1)r

Thus one solution has p = [. There is a second solution with p = — (I +1).
Then p+1=—l,and p(p+ 1) =1(l 4+ 1) as required. Thus we have

1
_ .l
R=r" or m (].].)

Thus an axisymmetric potential may be expressed as

o0

b.0) =3 (Ar' + 2 ) AL (12)

1=0
where the constants A; and B; must be determined by the boundary conditions
in 7.
1.3 Orthogonality of the Legendre functions.

The Legendre equation (3) is of the Sturm-Liouville form (slreview notes eqn 1)
with

flp)=1-p
g(p)=0
and
w(p) =1

The eigenvalue is A = k = [ (I +1). Even without specifying any boundary
conditions, the Legendre functions must be orthogonal on the range [—1,1]

because f (1) = f(-1) =0.

+1
/ Py () P (i) dp = 0 for L £ 1 (13)

—1

To make use of this relation in forming series expansions in Legendre polyno-
mials, we will need to find the value of the integral for [ = I’. In the next few
sections we shall collect some useful tools that will allow us to do that integral.



1.4 Properties of Legendre polynomials
1.4.1 The generating function

Suppose we put a point charge g on the polar axis at a distance s from the
origin (See figure). Then the potential® at point P is

1 q 1 q

- 4reo D - dmen v/s2 + 12 — 2rscosf

which we can also express in the form (12). Now we let x = s/r for convenience,
and then for r > s, we can expand the function to get:

1 _
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- 1— —9
47T60T< 2 * 2 (= )+
2
q T 2
= 1 -2 (1= .
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which has the form (12) with B; = ﬁ:’:ﬂ for each | and A; = 0. Thus we have
the identity:

1 >~
—— ; ) (1) (14)

2Gee, e.g., Lea and Burke Chapter 25, equation 25.9.




We can extend this result to find the potential for a point charge off axis, by
letting v be the angle between Z and z.

= = o Z — P, (cos7y) (15)
| > =0 7">
where r~ = min (r, ') and r~ = max (r,7’).

The function 1

V1—=2zu+ 22

is called the generating function for the Legendre polynomials. We can use it
to determine several useful properties of the polynomials.

G(z,p) = (16)

1.4.2 The orthogonality integral

We can obtain the integral (17) with [ = I’ by integrating the square of the
generating function:

o +1 1 +1 oo <
/ G dp /1 mu / > 2t Pi(u)Y 2t Pu(u) dp
- =0

—1 1 9

_ szlﬂ/ )Pl/()d
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The integral of the Pjs is zero unless | = {’. Thus, evaluating the integral of G2
by a change of variable to v = 1 — 2zu + 22, we have:

1 (1-2)* g

=) 2 - Zw”/ (1) P 1) s

(1+2)?

_ 1, 1+ ) _ 1 Lt

20 (1—-x)® 2z l-=

Now since z < 1, we may expand the logarithm:

11 1+$ 2 +SC3+SC5+ +1.2l+1+
1 _ 2 LA A
z '1—g \"T3 T A+ 1

_ 2<1+%2+...2f” ) zmﬂ/ (1) Pi () dp

Both sides of this equation contain only even powers of x, and equating the
coefficients of each power,we have:

+1
[ R PG =5 a7)

which is the desired result.



1.5 Problem:

A conducting sphere is divided into three pieces by thin insulating strips at
0 = 7/4, 3n/4, as shown in the diagram. The polar regions are grounded and
the equatorial region has potential V. Find the potential outside the sphere.

Model:

What do you think the field will look like at a great distance from the
sphere? Why? (A point charge, because the area at potential V' is greater
than the grounded area, so I expect a net charge on the sphere.)

The system has rotational symmetry about the polar axis, drawn as shown
in the diagram. It also has reflection symmetry about the equator.

Set-up:

Outside the sphere, the potential satisfies Laplace’s equation, (all the charge
is on the surface) and we expect ® — 0 as r — 0o, so there are no positive
powers of 7 :

oo Al
‘I’(Tae)zgmﬂ(ﬂ)
On the surface at r = a
e 0 if 1>pu>-+ or — L >pu>-1
ZAlalPl(“): vV oif £> >X§L
1=0 Vo V2

We will use othogonality of the P, (i) to find the cofficients A;.



Solve:
We use Lea 8.39 (valid for I > 0):

A, 2 +1/V2
—_— =V P d 18
s = VL, e (18)
_ /“/ﬁ Pl = Pl )
_1/\/5 2l+1
Ay
2 = V(P ()~ P ()Y

Now
Pi(—p) = (=1)' P (),

so only terms with [ + 1 odd (I even) give non-zero results, so

1 1
v () o ()]
! 1+1 NG 1—1 72

We can simplify this using Lea 8.40 (valid for [ > 0) and 8.41:

1 1 1 1

A — _ +1 1-— = P/ _ - -

() () ()

Vo 20 + 1
o \/5 1(1+1)

We must treat [ = 0 separately. Returning to eqn (18) with Py (n) = 1, we get

A +1/V2 )
a —1/V2 V2
Va
Ao = E
Thus
Va VX a2+ 4141 1
) = === I AW A
(r,0) \/_7" 2 Z::( ) 20(214+1) 2l<\/§) 2t (1)
Va Vs a2t 4l+1
- RO (G e
Analysis:

The result is dimensionally correct. As expected, at large distances r/a > 1,
we have the potential due to a point charge of magnitude Q = 4wegVa/ V/2. This
is the net charge put onto the sphere by the battery system. The next term
is a quadrupole, also as expected. We have only even [, which indicates the



reflection symmetry about the equator. The series converges quite well due to
the coefficient A; which is of order 1/! for large I.
The first few terms are:

oo = - H{#)3 (%) <3“2‘1)+<%>5i(35} )

(5 0 (|
r 2 7"
3

8

+ }

Black: 6 =0 p=1
Red 0 = 7/6 u=+/3/2
_ T _ 1
Blue 0 = 7 u= 7
Green 0 = § pu= %
Notice how spherical symmetry emerges for » > 4a. The series converges
slowly as r approaches a, so we need more terms to get accurate results there.

1.6 Cone- region.

If our volume of interest is the interior of a cone with opening angle o, we no
longer have f (1) =1 — pu? = 0 at the boundary 6 = « to give us orthogonality,
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so we need a boundary condition at u = cos a. For example, a grounded surface
requires
P, (cosa) =0

This gives a set of eigenvalues v. See J Fig 3.6
For example,

Po(p) = =(But-1)=0foru=1/V3

() -

So if a = 0.955 radians, then one of the eigenvalues is v = 2.
The potential has the form

P = Z ayr’ Py (1)

1
2
0.955 32 radians = 54.736 degrees

which is finite at the origin. Near the origin, the lowest value of ¥ dominates:
E ~ pVmin—1

So E—0asr— 0 for vy, > 1or a< 90 . This is the expected result. The
electric field is small in a hole amd large near a spike.

1.7 Solution without azimuthal symmetry.

When a problem does not have rotational symmetry about the polar axis we need
a set of eigenfunctions for which the separation constant m has non-zero values.
Then the equation for the §—function is equation (2), where we keep the value
kE =1(l+1) for that separation constant. The equation is of Sturm-Liouville
form with f(u) =1—p2 g(u) =m?/(1—p?), w(p) =land A =1(I+1).
(Note that m is the eigenvalue for the ¢ equation.)

The solutions of this equation are the Associated Legendre functions P/™ () .
They satisfy the orthogonality relation:

+1
/ P (p) P'dp =0 unless [ =1’
-1
where the value of m is the same in both functions. In Lea, we show that the
form of the solution is

m m m/2 dm
PP ) = ()" (L= )™ 2 ) (19)
Clearly P/™ = 0 for m > [, since the highest power of x that appears in P
is yi!. Also, since the associated Legendre equation contains m?, the eigenvalue
—m leads to the same differential equation. It is convenient to define
(I —m)!

P ()= (=)™ mﬂm (1) (20)

11



as the appropriate solution corresponding to the eigenvalue —m. (This gives the
second solution for the function W (¢).)
The orthogonality integral is:

L ()L
[1 P () Ptdp = (l—m)!?l——i—ldll/ (21)

1.7.1 Spherical harmonics

The general solution to Laplace’s equation in spherical coordinates may then be

written as:
> blm i
-3 Y (almr " m) P () o9
1=0 m=—1
Next we define the combination

o g e = ¥ 00 o

where the constant has been chosen to make the functions Yj,, orthonormal,
that is:

+1 27
/ / }/lm (97 (b) le’ (07 ¢) d(bd,u‘ = 6ll’6mm’ = / }/lm (07 (b) }/l;km/ (9, ¢) ds)
-1 0 phere

(23)
The functions Y, (6, ¢) are called spherical harmonics. They find application
not only in potential problems, but in the quantum mechanics of atoms, wave
mechanics, and oscillations of spheres (for example, the sun.)

With P,”™ defined as in eqn (20), we have the nice result

Vi = (—1)" Y (24)

lm

1.7.2 Addition theorem

We may express P, (cos<y) (in eqn 15) in terms of spherical harmonics (see Lea
pg 390, Jackson §3.6):

(cos ) Z 2l+1}/lm 0,0) Y, (0'¢')

Then from (15) we get

|:E' ;E’ Z l+1 COb’y
Z Z 2l—7&-rl l+1Ylm(0 ¢)Ylm (0¢’) (25)
=0 m=-1

This is result is very useful when using expression (29) in notes 1 to find the
potential from the charge density.

12



1.7.3 Problem:

Two concentric rings of charge have radii a and, b, equal line charge density A,
and are oriented at right angles. Find the potential everywhere.

Choose spherical coordinates with origin at the center of both rings, with
polar axis along the axis of one and a diameter of the other Then the charge
density due to the vertical ring is

po (F) = AN (r —a) [6(¢) + 0 (¢ — )]

We find A by calculating the charge on a differential piece® of the ring:

27 poo 97 poo
dg = 2\adf = /O /0 o (Z) r2drdudd = /O /O AN (r—a) [0 (¢) + 0 (¢ — )] rPdrdude
= 2AXa®sinfdf
Thus ) .
asin 6
pu () = —=6(r ) [5(8) + 6 (6 )]

For the horizontal ring:
Py (T) = BAS (r = 0) 6 (1)

where the charge on a differential piece of this ring is

dq

+1 [e%e)
A\bdp = / 1 /0 BA6 (1 —b) 0 () r*drdudg

BA\b2do

So 1
B=-
b

and \
Py (Z) = 30(r=b)3 ()

3 At any 0, there are actually two differential pieces, one on each side of the ring.

13



Now we compute the potential, also in two parts.

. 1 P (&) o)
P, = -
() drey ) |Z— 2 |dV
1 / A S —a)[5(¢) +3(¢ =]
= N 7 dV
471—50 all space asin 6 |£I,’ - |

- = ﬁé(r’—a) [5.(6) +6(¢/ — )]

Z Z 2l+1 C;Y (0,0) Y, (0'¢) (') dr'dy dg’

=0 m=—1

= 3 Nlm m (. / —imm I
= 600'2 Z 2l+1 l+1 lm(93¢) Sinel-Pl (/L)(l—l—e )d/i

20+1 (I=m)!
4r  (I+m)!”

Since e~"™ = (—1)", only even m survive, (as expected from reflection
symmetry about ¢ = 7/2) and then

2)\@ Nlm Tl< T / /
Yim 9,¢>/ P () do
Z Z ST mr i (000) | P )

m=-—1, even

where r~ = min (r,a) and Ny, =

Separating out the first few terms, we have

I=0,m=0
2Xa 1 1 Aa 1
Qo0 =—"——T"T=5-—"—
go 4mrs 260 >
l=I,m=0
Bty = 2)\a 1 rl<

LR
g0 4 rl“ (M)/_1 mdl‘

The integrand is odd if [ is odd, and so the integral is zero. Thus only even [
survive, as expected from reflection symmetry about p = 0. The integral is in

Lea Problem 8.8:
/ P (1 d ,_ [@n—1)! QW
(2n)!!

_)a (1—1)!7?
¢“_w_a)2r>2zl+1 [zn}

[=2,even >

oo +1 1
(I —m)! 7"< ,
+ Z Z (l+m)' l+1 cosqu/ Pm dé?

l=2,even m=2 even

14



Similarly for @,

| A 1
o, — /H 3307 =03 () =7 q,‘ (') dr'dyl g
space

4dmeg x

1 A - 2
— 6 _ b m 9 * 9/ / / d ld /d /
4meg /all space b r Z% Z:_ 2[ +1p l+1 Y ( 7¢) tm ( ¢ ) <T ) rap ¢

+1

Yim (0.9) v [*" . N
= Z Z l21_|_1 l+1/ Im (W/?,(ﬁ)d(ﬁ

-l

where now r is the smaller of » and b. Only m = 0 survives the integration
over ¢, so

27Ab o~ N3P, (1) P, (0) 7
P _ 10 <
b - Z

l+1
2+l ol

Ab

- Ers R R0)

where 7~ = min (r,b) and only even values of [ have P, (0) # 0. Again this
indicates the reflection symmetry about the p = 0 plane.
Thus for r < a <b

PR A >l (1—1u)?
- S pRWRO g S Jmm[—m ]

l=2,even

A
+7T—EO Z Z H_Z cosmgf)/ P (

|=2,even m=2 even

The potential at r =0 is

B (0) = i _ 2mla 27Ab Qa Qp
T eg  4dmega  dmegb  Amega  dwegb

as expected, since all the charge on each ring is at the same distance from the
origin..
For a < r < b we get

At A a 3 gttt (1—1)1?
@ = A TRWRO 4t Y mmm[T]

0 l=2,even

0

A = L (I=m)! al+
— "
+7T€0 [l_z A+m)! rl“ ) cos m¢/ !

2,even m=2 even

15



while fora<b<r

A bl+1 A a 0o al+1 (l _ 1)”

v = Y mRWAO T E T S mm[ - }
A m +1 m " m I /

e Z Z l+m|rl+1P (1) cos me ; P (u') do

l=2,even m=2 even
At very great distances r > b, the [ = 0 term dominates and

A b Ao 2rA(a+Db) Qo+ Qp

~

22’50 T 2507' 47760’/‘ 477507

as expected.

16



Potential on surface of sphere is =V on alternate quarters.

Using Y,
P = Z Almrl)/lm (9, ¢)

Im

ZA Yy (6, 6) = -V if 0<¢<mandl>pu>00R7<¢p<2r and 0>p>—1
@ Hm @)=y if 0<¢<r and0>p>—-1 ORT<p<2r and 1> p >0

lm

By orthogonality of the Y}, we have
[ 200, 0.0 = Y Amd [ ¥ (0.0)¥0 (0.0)a9
sphere I.m sphere

l 14
= § A @ 6110 Ommt = Apmra

lm

Thus

i =V { [ r (< [T [T emsan [ gan ([ [7)emas)

If m = 0, the ¢ integral is zero. So for m # 0, we get

1 + m m 0 m m m
At = VN { [T A G dn (- 1" = 0[BT G0 =1 1)
4 +1 0
= —VNu,— {/ pr (,u)du—/ pn (,u)du} if m is odd and zero otherwise.
m Jo -1
4 +1 0 4 +1
= VN [ = [Cer coacn ) = v - el
0 1 m Jo



The result is zero unless m is odd, as we would expect from the reflection anti-
symmetry about the lines ¢ = 0,7 We also need [ — m to be odd,which is
expected from the reflection anti-symmetry about the plane p = 0, so [ must be

even. . Then
8 +1
Alm = 7VNlm . {/ le (.U’) d:u}
m | Jo

+1
o= [P ) d

The potential inside the sphere is

Label the integral

imeo

broo =V S Y Noalin (2) SRy (1)

[=2,even m=—I,odd

To show that the result is real, we combine the positive and negative m terms.
}/l,—m = (71)mYPltn
Nl,—mf)l_meiim(ﬁ — (_1>m Nlmplm€7im¢
So, for odd m, we get
Nl,—mPl_m = (_l)m NimP™ = =Nim P
and thus
Nl,fmIl,fm = _NlmIlm
thus
oo l . .
r\! 8 eime _ o—ime
) = - 2 i (_) Spmt——¢
(r,0, ) VoY > Nindm (7)) —P" () ——
l=2,even m=1,odd
o Y Y N (D) o T
- Im*tim a 1 B m

l=2,even m=1,0dd

l

= —16V Z > QHl m>,Ilm(z)lP["(#)Sinm¢

l=2,even m=1,0dd l+m) a

The first few terms are

4V T 1 . r\4 /3! sin 3¢
20.0.0) = < |5 (2) P Gosno 9 (2)" (Gt osing + grap? o0 =52 ) +
2V 5 . r\4 . .
= [3]21 P} (u )51n¢+9(5) <1OI41P4< )81n¢+7560143P4( )sm3¢)}
where
Py = —3cosfsind
/2 /2
Iy = 7/ 3cos€sin29d0:fsin30|0
0
= -1

18



cos (3 — 7cos? 9) sin 6

)
—
=
~
Il
DO | Ot

/2
5 o8 0 (3 — 7cos’ 9) sin? 646

o= [
0
5 [/ 5 ( sin*0  7sin?0\|"
- = . —4 2 a2 =2 (4
2/0 0059( + 7sin 0)5111 0de 5 ( 3 + 3 >O
a4, Ty _1
2\ 3 5] 6
P} (p) = —105cosfsin’®@
/2 + 5 /2
Ly = —105/ cos fsin® 0d = —105 (Sm 9) =21
0 5 0
So
2 11
®(r,0,¢) = —?V [g£3cosﬁsmﬁsmq§+9(a) (EE%COSO(S 7 cos? 9)51n981n¢+756021><105cost981n Hsm?)d)ﬂ
2 1/1
= ——V 7“cos@sinﬁsin(b—l—Q(Z) —c059(3 7 cos? H)emﬁsln(é—&—lcosebln 0 sin 3¢
T a 24 24
2 2 471
= __V (E) 51n90059|:551n¢+9( ) <ﬁ(3—700520)sin¢+2—745111295in3¢>}
T \a

2 2 7
= ( ) sin 26 {5sm¢—|—9( ) (24 (3—7COS29)Sin¢+ﬂsin2981n3¢>:|

The potential is zero at # = 0, Z as it must be on the boundary between +V,
and is maximum at = /4, ¢ = 7r/ 4, as expected. The potential also changes
sign when cos 6 does, also as expected. It is also zero at 7 = 0, the average of
the value on the surface of the sphere.

The plot shows ®/V vs r/a at 0 =w/4,¢ =7/4 (black) and 7/8 (red)

—%'I"Q (sm ) (5 sin § + 9r2 (214 (3 — 7cos? Z) sin § + 274 sin? 1 sin %’T))
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-l2 7T

-14—

The values are less accurate near r = a. Why is that?
The plot shows contours of constant ®/V at, ¢ = 7/4

2 2
% = —% (2) sin 26 [5sin¢+9 (2) <i (3 — 700329) sin ¢ + 2—7451112951113¢>]

Let u = (§)2 . Then the equipotentials are given by:

Cr
=0
sin 20

1 7
Susin ¢ + 9u> (ﬂ (3 — 7 cos? 9) sin ¢ + 21 sin? 0 sin 3(;5) +

—5sin¢ £ \/25 sin ¢ — 4-C% x 9 (3 (3 — Tcos?0) sin ¢ + 5 sin® f sin 3¢)

18 (& (3 — Tcos?f) sin ¢ + - sin® Osin 3¢)

u =

Only the + sign makes sense, so at ¢ = w/4 we have

—5sin § + \/25 sin? 2 — 3652 (35 (3 — Tcos?20)sin T + o sin® @sin37)

a 18 (2—14 (3 —Tcos?0) sin§+%SiH2981H%)

13
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rho *°T
0.9
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0.7 '
0.6 '
0.5 '
0.4 '

0.3 1

0.2
01T \

00 F b b
00 01 02 03 04 05 06 07 08 09 10

Values of ®/V are: Blue -3/4, black -1/2, Red-1/4
At ¢ =7/2,

r | =B\ /25 365555 (4 (3 Tcos20) — L sin 0)

a 18 (& (3 — Tcos? ) — oL sin” 0)

tho T~
09+
08—+
07+
061
05—+
0.4+
03+

02T

0.1

| | | | | |

——————————
05 06 07 08 09 %.0

0.0 F—+—F——————
00 01 02 03 04
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Note: to get azimuthal symmetry, we put the polar axis as shown by the

red line in the diagram. Then at r =a :

® = 4V if0§0<g or3£<0§7r
s 3

= -V if—-<0<—

1 4< <4

and we can write tthe potential as

b= Z AlTlPl ([J,)
=0

where
Ayl 2 _ {/1 . -1/v2 /1/x/§}Pl('u) "
11 s ) W
L uve
= g P - P lhat -
Aidt = % [Pl-i-l (1) = Py <%> + Py (-%)

- v () na () () e

— P

The result is zero if { — 1 is even (I odd) and for [ even we get

%4 1 1
A =2—|P_1|— ) - P —
For | = 0 we have

1 —1/V2 1/vV2 1
RV e P

1/v2  J-1 -1//2 2
= 2w (1-42)

Should be zero!

240

So
o £ () ()@
o § ()
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1

V2

+1-

-1/v2

(=1) = P (%) + P <—%) —(+1—=1-1)
L)
.



The first few terms are

B o~ 2041 (1 /!
‘I)_VZZOZWZ(ZH)B (ﬁ) (3) 7w

2
—%gsinﬁ {3sin¢+ 1_76 (%) (3 (4— 5 sin? 9) sin¢—|—5sin29sin3¢)
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