
Spherical harmonics 2020

1 Problems with spherical symmetry: spherical

harmonics

Suppose our potential problem has spherical boundaries. Then we would like

to solve the problem in spherical coordinates. Let’s look at Laplace’s equation

again.
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We apply the same techniques that we used in the rectangular problem; only

the details change. Look for a solution of the form

Φ =  () () ()

Then substituting in, and dividing by Φ we get:
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To separate out an equation for () multiply the whole equation by 2 sin2  :
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Now the last term is a function of  only, while the sum of the first two is

a function of  and  only. Thus if the solution is to satisfy the differential

equation for all values of   and  each of these two pieces must equal a

constant.

Now if our region of interest is the inside or outside of a complete sphere,

an increase of  by any integer multiple of 2 corresponds to the same physical

point. Thus the function Φmust have the same value for  = 1 and  = 1+2

that is, the function  must be periodic with period 2. We may achieve this

behavior if we choose the separation constant so that
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with  equal to an integer. Then the solutions are the periodic functions:
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The equation in  and  then becomes:
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Next, to separate the  and  dependences, we divide through by sin2 to get:
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The first term is a function of  only while the sum of the last two is a function of

 only. Thus again both pieces must be constant. The equation has separated.
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When working in spherical coordinates, changing variables to  = cos  is often

a useful trick. Then  = − sin  and the −equation becomes:
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Equation (2) is known as the associated Legendre equation. Let’s first tackle a

special case.

1.1 Problems with axisymmetry: the Legendre polynomi-

als

If the problem has rotational symmetry about the polar axis, then the function

 must be a constant (Φ is independent of ) and so  = 0 Then equation 2

simplifies:
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We can solve this Legendre equation by looking for a series solution1. The

singular points of the equation are at  = ±1 so we should be able to find a
solution about  = 0 of the form:
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∞X
=0




Substituting into the equation, we have:
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where each power of  must separately equal zero. The constant term in the

equation is:

22 + 0 = 0⇒ 2 = −
2
0

1 cf Lea Chapter 3 section 3.3.

2



and the first power of  has coefficient:

3× 23 − 21 + 1 = 0⇒ 3 = 1
2− 

3× 2
For all higher powers, every term in the equation contributes. Looking at 

setting  = + 2 in the first term and  =  in the rest, we find

(+ 2) (+ 1) +2 −  (− 1)  − 2 +  = 0

and so the recursion relation is:

+2 = 
 (− 1) + 2− 

(+ 2) (+ 1)
= 

 (+ 1)− 

(+ 2) (+ 1)
(4)

The first two relations we obtained can also be described by this formula with

 = 0 and  = 1 respectively. Since the recursion relation relates +2 to 

the soutions are purely even (starting with 0) or purely odd (starting with 1).

The solution we have obtained is valid for −1    1 but the series does

not converge for  = ±1 This is a problem since  = +1 corresponds to  = 0

and  = −1 to  =  These points are on the polar axis where usually we

do not expect the potential to blow up. Thus we need a solution that remains

valid up to and including these points. We can solve the problem by choosing

the separation constant  so that the series terminates after a finite number of

terms. In particular, if we choose  to have the value

 =  ( + 1)

for some integer  then according to the recursion relation (4):

+2 = 
 ( + 1)−  ( + 1)

( + 2) ( + 1)
= 0

and so every succeeding  for    is also zero. The corresponding solution

is the Legendre Polynomial  ()  By convention, we choose 0 (for even ) or

1(for odd ) so that

 (1) ≡ 1 (5)

The recursion relation becomes:

+2 = 
 (+ 1)−  ( + 1)

(+ 2) (+ 1)
(6)

The first few polynomials are:

 = 0 : The only non-zero coefficient is 0which must equal 1 to make

0 (1) = 1 so:

0 () = 1 (7)

 = 1 : The only non-zero coefficient is 1 and again we must take 1 = 1 to

make 1 (1) = 1 Thus:

1 () =  (8)
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2 = 0

µ−2× 3
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and subsequent  are all zero. Then:

2 () = 0
¡
1− 32¢

and evaluating this at  = 1we find

2 (1) = 0 (−2) = 1⇒ 0 = −1
2

Thus

2 () =
1

2

¡
32 − 1¢ (9)

Notice the pattern: we use the recursion relation to determine the non-zero

coefficients as multiples of the leading coefficient (0 or 1). Then we evaluate

the resulting polynomial at  = 1 and set the result equal to 1, thus determining

the value of the leading coefficient.

Let’s do one more:

 = 3 : Applying the recursion relation (6) with  = 3 we find:
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µ
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and evaluating at  = 1 gives:

3 (1) = 1
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¶
= 1⇒ 1 = −3
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and so
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¡
52 − 3¢ (10)

The first four polynomials are shown in the figure.
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1.2 Solution for the potential

Now that we have the function of  let’s return to the potential problem and

solve for the function of  With the separation constant determined, equation

(1) becomes
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Solutions to this equation are powers of  :  =  where
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2−1

¢
=  (+ 1)  =  ( + 1) 

Thus one solution has  =  There is a second solution with  = − ( + 1) 
Then + 1 = − and  (+ 1) =  ( + 1) as required. Thus we have

 =  or
1

+1
(11)

Thus an axisymmetric potential may be expressed as

Φ ( ) =

∞X
=0

µ


 +


+1

¶
 () (12)

where the constants  and  must be determined by the boundary conditions

in 

1.3 Orthogonality of the Legendre functions.

The Legendre equation (3) is of the Sturm-Liouville form (slreview notes eqn 1)

with

 () ≡ 1− 2

 () ≡ 0
and

 () ≡ 1
The eigenvalue is  =  =  ( + 1)  Even without specifying any boundary

conditions, the Legendre functions must be orthogonal on the range [−1 1]
because  (1) =  (−1) = 0Z +1

−1
 ()0 ()  = 0 for  6= 0 (13)

To make use of this relation in forming series expansions in Legendre polyno-

mials, we will need to find the value of the integral for  = 0 In the next few
sections we shall collect some useful tools that will allow us to do that integral.
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1.4 Properties of Legendre polynomials

1.4.1 The generating function

Suppose we put a point charge  on the polar axis at a distance  from the

origin (See figure). Then the potential2 at point  is

Φ =
1

40




=

1

40

√
2 + 2 − 2 cos 

which we can also express in the form (12). Now we let  =  for convenience,

and then for    we can expand the function to get:
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which has the form (12) with  =



40
for each  and  ≡ 0 Thus we have

the identity:

1p
1− 2+ 2

=

∞X
=0

 () (14)

2See, e.g., Lea and Burke Chapter 25, equation 25.9.
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We can extend this result to find the potential for a point charge off axis, by

letting  be the angle between  and 0

1

|− 0| =
1



∞X
=0




 (cos ) (15)

where  = min ( 
0) and  = max ( 

0) 
The function

 ( ) ≡ 1p
1− 2+ 2

(16)

is called the generating function for the Legendre polynomials. We can use it

to determine several useful properties of the polynomials.

1.4.2 The orthogonality integral

We can obtain the integral (17) with  = 0 by integrating the square of the
generating function:Z +1

−1
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The integral of the s is zero unless  = 0 Thus, evaluating the integral of 2

by a change of variable to  = 1− 2+ 2 we have:
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Now since   1 we may expand the logarithm:
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Both sides of this equation contain only even powers of  and equating the

coefficients of each powerwe have:Z +1

−1
 () ()  =

2

2 + 1
(17)

which is the desired result.

7



1.5 Problem:

A conducting sphere is divided into three pieces by thin insulating strips at

 = 4 34 as shown in the diagram. The polar regions are grounded and

the equatorial region has potential  Find the potential outside the sphere.

Model :

What do you think the field will look like at a great distance from the

sphere? Why? (A point charge, because the area at potential  is greater

than the grounded area, so I expect a net charge on the sphere.)

The system has rotational symmetry about the polar axis, drawn as shown

in the diagram. It also has reflection symmetry about the equator.

Set-up:

Outside the sphere, the potential satisfies Laplace’s equation, (all the charge

is on the surface) and we expect Φ → 0 as  → ∞ so there are no positive

powers of  :

Φ ( ) =

∞X
=0



+1
 ()

On the surface at  = 

∞X
=0


 () =

0  1 ≥   1√
2
or − 1√

2
  ≥ −1

  1√
2
   − 1√

2

We will use othogonality of the  () to find the cofficients 
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Solve:

We use Lea 8.39 (valid for   0):
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so only terms with  + 1 odd ( even) give non-zero results, so
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We can simplify this using Lea 8.40 (valid for   0) and 8.41:
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We must treat  = 0 separately. Returning to eqn (18) with 0 () = 1, we get
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Analysis:

The result is dimensionally correct. As expected, at large distances À 1

we have the potential due to a point charge of magnitude  = 40 
√
2 This

is the net charge put onto the sphere by the battery system. The next term

is a quadrupole, also as expected. We have only even  which indicates the
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reflection symmetry about the equator. The series converges quite well due to

the coefficient  which is of order 1 for large 

The first few terms are:
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√
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Notice how spherical symmetry emerges for   4 The series converges

slowly as  approaches  so we need more terms to get accurate results there.

1.6 Cone- region.

If our volume of interest is the interior of a cone with opening angle  we no

longer have  () = 1− 2 = 0 at the boundary  =  to give us orthogonality,
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so we need a boundary condition at  = cos For example, a grounded surface

requires

 (cos) = 0

This gives a set of eigenvalues  See J Fig 3.6

For example,

2 () =
1

2

¡
32 − 1¢ = 0 for  = 1√3

cos−1
µ
1√
3

¶
= 0955 32 radians = 54736 degrees

So if  = 0.955 radians, then one of the eigenvalues is  = 2

The potential has the form

Φ =
X



 ()

which is finite at the origin. Near the origin, the lowest value of  dominates:

 ∼ m in−1

So  → 0 as  → 0 for min  1 or   90
◦
 This is the expected result. The

electric field is small in a hole amd large near a spike.

1.7 Solution without azimuthal symmetry.

When a problem does not have rotational symmetry about the polar axis we need

a set of eigenfunctions for which the separation constant  has non-zero values.

Then the equation for the −function is equation (2), where we keep the value
 =  ( + 1) for that separation constant. The equation is of Sturm-Liouville

form with  () = 1 − 2  () = 2
¡
1− 2

¢
  () = 1 and  =  ( + 1) 

(Note that  is the eigenvalue for the  equation.)

The solutions of this equation are the Associated Legendre functions 
 () 

They satisfy the orthogonality relation:Z +1

−1

 ()

0  = 0 unless  = 0

where the value of  is the same in both functions. In Lea, we show that the

form of the solution is


 () = (−1) ¡1− 2

¢2 


 () (19)

Clearly 
 = 0 for    since the highest power of  that appears in 

is  Also, since the associated Legendre equation contains 2 the eigenvalue

− leads to the same differential equation. It is convenient to define

− () = (−1) ( −)!

( +)!

 () (20)
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as the appropriate solution corresponding to the eigenvalue − (This gives the

second solution for the function  () )

The orthogonality integral is:Z +1

−1

 ()

0  =
( +)!

( −)!

2

2 + 1
0 (21)

1.7.1 Spherical harmonics

The general solution to Laplace’s equation in spherical coordinates may then be

written as:

Φ =

∞X
=0

+X
=−

µ


 +


+1

¶

 () 

Next we define the combinations
2 + 1

4

( −)!

( +)!

 ()  ≡  ( ) (22)

where the constant has been chosen to make the functions  orthonormal,

that is:Z +1

−1

Z 2

0

 ( )
∗
00 ( )  = 00 =

Z
sphere

 ( )
∗
00 ( ) Ω

(23)

The functions  ( ) are called spherical harmonics. They find application

not only in potential problems, but in the quantum mechanics of atoms, wave

mechanics, and oscillations of spheres (for example, the sun.)

With − defined as in eqn (20), we have the nice result

− = (−1)  ∗ (24)

1.7.2 Addition theorem

We may express  (cos ) (in eqn 15) in terms of spherical harmonics (see Lea

pg 390, Jackson §3.6):

 (cos ) =

+X
=−

4

2 + 1
 ( )

∗


¡
00

¢
Then from (15), we get

1

|− 0| =

∞X
=0



+1

 (cos )

=

∞X
=0

+X
=−

4

2 + 1



+1

 ( )
∗


¡
00

¢
(25)

This is result is very useful when using expression (29) in notes 1 to find the

potential from the charge density.
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1.7.3 Problem:

Two concentric rings of charge have radii  and, , equal line charge density 

and are oriented at right angles. Find the potential everywhere.

Choose spherical coordinates with origin at the center of both rings, with

polar axis along the axis of one and a diameter of the other Then the charge

density due to the vertical ring is

 () =  ( − ) [ () +  (− )]

We find  by calculating the charge on a differential piece3 of the ring:

 = 2 =

Z 2

0

Z ∞
0

 () 
2 =

Z 2

0

Z ∞
0

 ( − ) [ () +  (− )] 2

= 22 sin 

Thus

 =
1

 sin 

 () =


 sin 
 ( − ) [ () +  (− )]

For the horizontal ring:

 () =  ( − )  ()

where the charge on a differential piece of this ring is

 =  =

Z +1

−1

Z ∞
0

 ( − )  () 2

= 2

So

 =
1



and

 () =



 ( − )  ()

3At any  there are actually two differential pieces, one on each side of the ring.
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Now we compute the potential, also in two parts.

Φ () =
1

40

Z
 (

0)
|− 0|

0

=
1

40

Z
all space



 sin 0
 (0 − )

£

¡
0
¢
+ 

¡
0 − 

¢¤
|− 0|  0

=


40

Z 2

0

Z +1

−1

Z ∞
0

1

sin 0
 (0 − )

£

¡
0
¢
+ 

¡
0 − 

¢¤
×
∞X
=0

+X
=−

4

2 + 1



+1

 ( )
∗


¡
00

¢
(0)2 000

=


0

∞X
=0

+X
=−

2

2 + 1



+1

 ( )

Z


sin 0

 (0)

¡
1 + −

¢
0

where  = min ( ) and  =
q

2+1
4

(−)!
(+)!



Since − = (−1)  only even  survive, (as expected from reflection

symmetry about  = 2) and then

Φ =
2

0

∞X
=0

+X
=− even



2 + 1



+1

 ( )

Z 

0


 (0) 0

Separating out the first few terms, we have

 = 0  = 0

Φ00 =
2

0

1

4

1


 =



20

1



 =   = 0

Φ0 =
2

0

1

4



+1

 ()

Z 1

−1

 (
0)q

1− (0)2
0

The integrand is odd if  is odd, and so the integral is zero. Thus only even 

survive, as expected from reflection symmetry about  = 0 The integral is in

Lea Problem 8.8: Z 1

−1

2 (
0)q

1− (0)2
0 =

∙
(2− 1)!!
(2)!!

¸2


Φ =


0

⎧⎨⎩ 

2
+



2

∞X
=2even



+1

 ()

∙
( − 1)!!

!!

¸2

+

∞X
=2even

+X
=2 even

( −)!

( +)!



+1


 () cos

Z 

0


 (0) 0

⎫⎬⎭
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Similarly for Φ

Φ =
1

40

Z
all space




 (0 − )  (0)

1

|− 0| (
0)2 000

=
1

40

Z
all space




 (0 − )  (0)

∞X
=0

+X
=−

4

2 + 1



+1

 ( )
∗


¡
00

¢
(0)2 000

=


0

∞X
=0

+X
=−

 ( )

2 + 1



+1

Z 2

0

 ∗
¡
2 0

¢
0

where now  is the smaller of  and  Only  = 0 survives the integration

over  so

Φ =
2

0

∞X
=0

2
0 () (0)

2 + 1



+1

=


20

∞X
=0



+1

 () (0)

where  = min ( ) and only even values of  have  (0) 6= 0 Again this

indicates the reflection symmetry about the  = 0 plane.

Thus for     

Φ =


20

∞X
=0




 () (0) +



20

⎧⎨⎩1 +
∞X

=2even




 ()

∙
( − 1)!!

!!

¸2⎫⎬⎭
+



0

⎡⎣ ∞X
=2even

+X
=2 even

( −)!

( +)!





 () cos

Z 

0


 (0) 0

⎤⎦
The potential at  = 0 is

Φ (0) =


0
=
2

40
+
2

40
=



40
+



40

as expected, since all the charge on each ring is at the same distance from the

origin..

For      we get

Φ =


20

∞X
=0




 () (0) +



20

⎧⎨⎩


+

∞X
=2even

+1

+1
 ()

∙
( − 1)!!

!!

¸2⎫⎬⎭
+



0

⎡⎣ ∞X
=2even

+X
=2 even

( −)!

( +)!

+1

+1

 () cos

Z 

0


 (0) 0

⎤⎦
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while for     

Φ =


20

∞X
=0

+1

+1
 () (0) +



20

⎧⎨⎩


+

∞X
=2even

+1

+1
 ()

∙
( − 1)!!

!!

¸2⎫⎬⎭
+



0

⎡⎣ ∞X
=2even

+X
=2 even

( −)!

( +)!

+1

+1

 () cos

Z 

0


 (0) 0

⎤⎦
At very great distances À  the  = 0 term dominates and

Φ ' 

20




+



20
=
2 (+ )

40
=

 +

40

as expected.
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Potential on surface of sphere is ± on alternate quarters.

Using 

Φ =
X



 ( )

X



 ( ) =

− if 0     and 1 ≥   0 OR     2 and 0   ≥ −1
 if 0 ≤  ≤  and 0   ≥ −1 OR     2 and 1 ≥   0

By orthogonality of the  we haveZ
sphere

Φ (  ) ∗00 ( ) Ω =
X





Z
sphere

 ( )
∗
00 ( ) Ω

=
X



00 = 00

0

Thus


 =  

½Z +1

0


 () 

µ
−
Z 

0

+

Z 2



¶
−

Z 0

−1

 () 

µZ 

0

−
Z 2



¶
−

¾
If  = 0, the  integral is zero. So for  6= 0 we get


 =  

1

−
½Z +1

0


 ()  (− (−1) + 1 + 1− (−1)) +

Z 0

−1

 ()  ((−1) − 1− 1 + (−1))

¾
= − 

4



½Z +1

0


 () −

Z 0

−1

 () 

¾
if  is odd and zero otherwise.

= − 

4



½Z +1

0


 () −

Z 0

1


 (−)  (−)

¾
= − 

4



½Z +1

0

[
 ()− 

 (−)] 
¾
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The result is zero unless  is odd, as we would expect from the reflection anti-

symmetry about the lines  = 0  We also need  −  to be odd,which is

expected from the reflection anti-symmetry about the plane  = 0 so  must be

even. . Then

 = − 

8



½Z +1

0


 () 

¾
Label the integral

 =
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0


 () 

The potential inside the sphere is
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2


³ 


´ 8


 ()





To show that the result is real, we combine the positive and negative  terms.

− = (−1)  ∗
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 −

So, for odd  we get
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The first few terms are
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where

 12 = −3 cos  sin 
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0
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0

= −1
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The potential is zero at  = 0 

2
as it must be on the boundary between ±

and is maximum at  = 4  = 4 as expected. The potential also changes

sign when cos  does, also as expected. It is also zero at  = 0 the average of

the value on the surface of the sphere.

The plot shows Φ vs  at  = 4  = 4 (black) and 8 (red)
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The values are less accurate near  =  Why is that?

The plot shows contours of constant Φ at  = 4
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 Then the equipotentials are given by:
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Only the + sign makes sense, so at  = 4 we have
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Note: to get azimuthal symmetry, we put the polar axis as shown by the

red line in the diagram. Then at  =  :

Φ = + if 0 ≤  


4
or 3
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  ≤ 

= − if
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3

4

and we can write tthe potential as
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The result is zero if  − 1 is even ( odd) and for  even we get
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Should be zero!
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The first few terms are
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