1 Scattering in the long wavelength limit

Suppose a plane wave with Eine = 20 Eoe’*°% is incident on a small scattering
object with dimension d < A. The incoming wave induces electric and magnetic
dipole monents in the scattering object, which then radiates.
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The power radiated into direction n with polarization & per unit solid angle is
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and the dicerential scattering cross section is
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where we used the fact that & - 2 = 0, and we rearranged the triple scalar
product on the right.

The result shows that the dicerential scattering cross section is proportional
to \*. This is Rayleigh’s law. It applies to all scattering in the long-wavelength
limit.

Example: scattering by a small conducting sphere, radius a.

Since the sphere is small (a < \) it sees the incident field as slowly varying.
The sphere can adjust to the electric field in a time ¢ ~ a/c < A c¢ =T, the
wave period. Thus we may use the results for the static fields from chapter 3.
With polar axis along &, the potential is
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The first term is the incident field and the second, dipole term is the field due
to the charge distribution on the surface of the sphere. The dipole moment is
P = Epa®. We may also find the scalar magnetic potential. The boundary
condition is B, = 0 at r = a, giving
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where here the polar axis is along By, and hence
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which is clearly zero at » = a. Again the first term is the incident field, and the
seocnd term is a dipole field. Here the magnetic moment is
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We may now put these moments into the general result (1):
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The vectors 7y and 7. define the plane of scattering. & is perpendicular to n
and & is perpendicular to 7y. We choose polarization vectors g;; and & in the
plane of scattering. Thusg; makes angle 6§ with & ;. Similarly &, and &,
are perpendicular to the plane of scattering and parallel to each other. For
scattering of unplarized incident radiation into polarization &4, in the plane of



scattering, we have
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The sum of the two gives the dicerential scattering cross section
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The dashed line is the dicerential scattering cross section, the solid line is the
polarization. The polarization peaks at # = 7/3. The scattering peaks atf = 7
(backward scattering) and is minimum at 6 = = /5.



