Scattering
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1 Polarization

Let’s describe the electric field E in terms of two orthogonal polarization vectors é; and
é>. Then: L .
E=F-é1+FE- ¢
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Thus the power radiated, which is proportional to ’E‘ , isthe sum of the powers radiated

into the two orthogonal polarizations. .
Now in the non-relativistic case, or with @ parallel to 5, £ < 71 x (i x &) and so

and
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= (n-d)n-é,—a-é;

But sincen is perpendicular to é;, then

E~é10(d"é1

Generally this isthe easiest way to compute the power.

2 Thomson scattering

Let theinddent wave be described by:
E (#,t) = &9 Ey exp (z {E f—th

where &, isa vector describing the polarizaion. The electric field is incident on an electron
and givesit an accel eration:

a= _—eéoEO exp (z [E f—th
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and then the power radiatedinto polarization i is:
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and thetime averageis
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Note: by using the complex conjugate of the polarization vector to compute the absolute

value, we can include circular polarizaions in our results.
The differential scattering cross section isdefined as:
do _ energy radiated/unit time/unit solid angle
aQ — incident flux

and thus
doi  giwBR (- &)’
aQ cE2/8m

where

is the classical electron radius.

Let’s assume the incident wave is incident along the z—axis and is linearly polarized
along the & —axis: £, = &. An outgoing wave scattered at angle # may be described in terms
of the polarization vectors

é; = cosf (Xcos¢ + §sing) — zsinf 1)
and

€, = —Xsin ¢ + ycoso
asshown in the diagram:
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Then
€y - @& = cosfcoso
and
€p-€y= —sing
Thus:
do _ doy  dos
aQ  dQ - dQ
= rg (cos2 0 cos” ¢ + sin’ ¢)
For the perpendicula inddent polarization &, = y, we have
d
d_fal =72 (Cos2 0 sin” ¢ + cos” <z$)
and thus the differential scattering cross section for unpolarized incident radiation is:
do
— ==
02 ( + cos 9)

and thus the total scattering cross section is:
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Thisresultisvalidfor hv < mc? = 511 keV, and an electron at rest or moving withv < c.

3 Compton scattering

For high-energy photonsit isimportant to include the photon momentum and regard the
scattering process asaparticle collision. Then we have:
Energy conservation:

mc + hv = ymc + hv' ¥
and momentum conservation: z —component
!
h—l/:'ymvcosngrh—Vcosﬁ 3
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and y— component
!
Ozfymvsinqﬁf—ysinﬁ 4)
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Now square equations (3) and (4) and add:
hv/ e h\?
(ymvcosd)’ + (ymusing)® = (ymv)® = (Ty sin 9> + <Ty cos 6 — %)
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Then squaring equation (2) gives:
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Subtracting equations (6) and (5), we get:
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Then using equation (2) again gives:
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and so

, (m02> 1
v = v
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B v
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The differential cross section ismodified by the frequency shift:
do N &7 2
Ty =ry(80-&) (—

ds?
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