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1 The Green’s function

In Lorentz gauge, we obtained the wave equation:

�2Aβ =
4π

c
Jβ (1)

The corresponding Green’s function for the problem satisfies the simpler
differential equation

�2D
(#
x,

#
x
′)

= δ(4)
(#
x − #

x
′)

and the boundaries are at infinity. Thus D can depend only on the vector
#
z =

#
x − #

x
′
. We find D by taking the 4-dimensional Fourier transform:

D
(#
z
)

=
1

(2π)2

∫
D̃ (k) e−i

#
k ·#z d4k

(Note that
#
k · #z = ω

c
c (t− t′) − ~k · (~x− ~x′) = ω (t− t′) − ~k · (~x− ~x′) . This

explains the usual convention of transforming the time variable with the
opposite sign from that for the space variable.)
Also recall the delta-function integral:

δ(4)
(#
z
)

=
1

(2π)4

∫
d4ke−ik·z

The transformed differential equation reads:

−
#
k ·

#
kD̃

(
#
k

)
=

1

(2π)2
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and transforming back, we get:

D
(#
z
)

= − 1

(2π)4

∫
e−i

#
k ·#z

#
k ·

#
k

d4k

= − 1

(2π)4

∫
d3kei

~k·(x̃−x̃′)
∫ ∞
−∞

dω

c

e−iω(t−t′)

ω2/c2 − k2

We’ll do the frequency integral first. For t < t′, we close the contour with a
big semi-circle in the upper half plane, while for t > t′ we close downward.
The integrand has two poles, at ω = ±ck, both on the real axis. Since the
result must be zero for t < t′ (event precedes its source) we must evelaute
the integral along the real axis by deforming the path to go above the two
poles.

Contour for inverting the transform

For t > t′, we use the lower contour and we traverse it clockwise. Each of
the poles is simple, and the residues are

lim
ω→−ck

(ω + ck)
e−iω(t−t′)

ω2/c2 − k2
= c2 e

−i(t−t′)(−ck)

−2ck
= −ce

i(t−t′)ck

2k
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and

lim
ω→ck

(ω − ck)
e−iω(t−t′)

ω2/c2 − k2
= c2 e

−i(t−t′)(ck)

2ck
= c

e−i(t−t
′)ck

2k

Then we have:

D
(#
z
)

= − 1

(2π)4 Θ (t− t′)
∫
d3kei

~k·(~x−~x′) (−2πi)

(
c
e−i(t−t

′)ck

2k
− ce

i(t−t′)ck

2k

)
=

ic

2 (2π)3 Θ (t− t′)
∫
d3kei

~k·(~x−~x′) 1

k

(
e−i(t−t

′)ck − ei(t−t′)ck
)

The first exponential represents an outgoing wave, while the second repre-
sents an incoming wave.

Now do the remaining integrals, we choose our polar axis for ~k along the
vector ~z = ~x− ~x′. Then:

D
(#
z
)

=
ic

2 (2π)3 Θ (t− t′)
∫ ∞

0

∫ +1

−1

∫ 2π

0

k2dkdµdφeikzµ
1

k

(
e−i(t−t

′)ck − ei(t−t′)ck
)

=
ic

2 (2π)2 Θ (t− t′)
∫ ∞

0

∫ +1

−1

kdkdµeikzµ
(
e−i(t−t

′)ck − ei(t−t′)ck
)

=
ic

2 (2π)2 Θ (t− t′)
∫ ∞

0

kdk
eikzµ

ikz

∣∣∣∣+1

−1

(
e−i(t−t

′)ck − ei(t−t′)ck
)

=
c

2 (2π)2 z
Θ (t− t′)

∫ ∞
0

dk
(
eikz − e−ikz

) (
e−i(t−t

′)ck − ei(t−t′)ck
)

=
c

2 (2π)2 z
Θ (t− t′)

∫ ∞
0

dk

(
exp (ik (z − c (t− t′)))− exp ik (z + c (t− t′))

− exp [−ik (z + c (t− t′))] + exp−ik (z − c (t− t′))

)
=

c

2 (2π)2 z
Θ (t− t′)

∫ ∞
−∞

dk (− exp ik (z + c (t− t′)) + exp (ik (z − c (t− t′))))

=
c

4πz
Θ (t− t′) (δ (z − c (t− t′))− δ (z + c (t− t′)))

The second term can never contribute since both z and t − t′ are positive.
Thus we finally have:

D (z) =
c

4πz
Θ (t− t′) δ (z − c (t− t′))
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and thus the solution to equation (1) is:

Aα
(#
x
)

=
4π

c

∫
c

4πz
Θ (t− t′) δ (z − c (t− t′)) Jα

(#
x
′)
d4x′

=

∫
1

z
Θ (t− t′) δ (z − c (t− t′)) Jα

(#
x
′)
d4x′ (2)

Note: Jackson prefers to write this using the fully covariant expression

δ

[(#
x − #

x
′)2
]

= δ
{

(ct∗)2 − |x̃− x̃′|2
}

= δ {(ct∗ −R) (ct∗ +R)}

=
1

2R
{δ (ct∗ −R) + δ (ct∗ +R)}

where we wrote t∗ = t− t′, R = |x̃− x̃′| , and used the result

δ (f (x)) =
∑
zeros

δ (x− xi)
|f ′ (x′)|

Thus

D
(#
z
)

=
1

2π
Θ (t− t′) δ

[(#
x − #

x
′)2
]

This is a covariant expression in spite of the explicit appearance of t and t′,
since the step function serves to locate the result on the forward light cone
from the source event, and this is an invariant statement. The expression for
the potential becomes:

Aα
(#
x
)

=
4π

c

∫
1

2π
Θ (t− t′) δ

[(#
x − #

x
′)2
]
Jα
(#
x
′)
d4x′

=
2

c

∫
Θ (t− t′) δ

[(#
x − #

x
′)2
]
Jα
(#
x
′)
d4x′ (3)

2 Charge density and current for a point charge.

The charge and current densities are given by

ρ (~x,t) = qδ (~x− ~r (t))
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and
~J (~x,t) = q~vδ (~x− ~r (t))

and so the 4-vector is

Jα = (cρ,~v) = q (c, ~v) δ (~x− ~r (t)) =
q

γ
uαδ (~x− ~r (t)) (4)

We can write this covariantly as

Jα (t0, ~x) = qc

∫
uαδ

(#
x − #

x0 (τ)
)
dτ (5)

where
xα0 = (ct0, ~r (t0))

is the charge’s position vector at time t0. To see why this works, note that

δ
(#
x − #

x0 (τ)
)

= δ (ct− ct0 (τ)) δ (~x− ~r (τ))

and

δ (ct− ct0 (τ)) =
δ (τ (t)− τ (t0))

|cdt/dτ | =
δ (τ (t)− τ (t0))

cγ

Thus

Jα (t0, ~x) = qc

∫
uα
δ (τ (t)− τ (t0))

cγ
δ (~x− ~r (τ)) dτ

=
q

γ
uαδ (~x− ~r (t0))

which agrees with equation (4).

3 Radiation from a moving charge- the po-
tential

We insert the current vector (5) into the expression (3) for the potential:

Aα
(#
x
)

=
2

c

∫
Θ (t− t′) δ

[(#
x − #

x
′)2
]
qc

∫
uαδ

(#
x
′
− #
x0 (τ)

)
dτd4x′

= 2q

∫
Θ (t− t′) δ

[(#
x − #

x
′)2
] ∫

uαδ
(#
x
′
− #
x0 (τ)

)
dτd4x′
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Using the delta function, the integration over
#
x
′
is easy:

Aα
(#
x
)

= 2q

∫
Θ (t− t0 (τ)) δ

[(#
x − #

x0 (τ)
)2
]
uαdτ

Now again we need to evaluate the delta function of a function- here the

function f (τ) =
(#
x − #

x0 (τ)
)2

= (xα − xα0 ) (xα − x0α) . The derivative

f ′ (τ) = −2
dxα0
dτ

(xα − x0α) = −2vα (xα − x0α)

and the zeros are those values of τ for which (xα − xα0 ) (xα − x0α) = 0. Ex-
panding this out, we get

c (t− t0)2 − (~x− ~r (t0))2 = 0

t− t0 = R/c

where
R = |~x− ~r (t0)|

Only the positive value contributes to the integral because of the factor
Θ (t− t0 (τ)) . (The event is on the positive light cone from the source.) Thus:

t = t0 +R/c

or
t0 = t−R/c = tret (6)

the retarded time.
Then the denominator is

2vα (xα − x0α) = 2 (γc, γ~v) ·
(
c (t− t0) ,−~R

)
= 2

(
γc2 (t− t0)− γ~v · ~R

)
or, using equation (6),

2
(
γc2R/c− γ~v · ~R

)
= 2γRc

(
1− ~β · R̂

)
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Then

Aα
(#
x
)

= 2q

∫
Θ (t− t0 (τ)) δ

[(#
x − #

x0 (τ)
)2
]
uα (τ) dτ

=
qγ (c, ~v)

γRc
(

1− ~β · R̂
)
∣∣∣∣∣∣
tret

=
q
(

1, ~β
)

R
(

1− ~β · R̂
)
∣∣∣∣∣∣
tret

These are the Lienard-Wiechert potentials. They may also be written co-
variantly as:

Aα = q
uα

uβ4xβ
(7)

= q
γ (c, ~v)

γ (c, ~v) · (c (t− t0) , ~x− ~x0)

= q

(
1, ~β
)

c (t− t0)− ~β · ~R
=

q

R

(
1, ~β
)

(
1− ~β · R̂

)
using (6), and with

4xβ = xβ − x0β

all evaluated at the retarded time.

4 Fields due to a moving charge

To compute the fields from the potentials (2 or 7), we need to take derivatives.
That is, we need to compare the potentials at two nearby events. The
potential Aα changes as xα changes both because of its explicit dependence
on xα but also because of the implicit dependence on τ 0 (xα)− that is because
of the need to look back along the light cone to find the source event.

dAµ =
∂Aµ

∂xν
dxν +

dAµ

dτ 0

dτ 0 (8)
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Differentiating the light cone constraint (xα − rα (τ 0)) (xα − rα (τ 0)) = 0, we
get:

2 (xα − rα (τ 0)) (dxα − drα (τ 0)) = 0 (9)

and from the definition of the particle’s velocity

drα (τ 0) = uαdτ 0

So

(xα − rα (τ 0)) (dxα − uαdτ 0) = 0

dτ 0 =
(xα − rα (τ 0)) dxα
(xβ − rβ (τ 0))uβ

=
∆xαdxα
∆xβuβ

(10)

where I defined ∆xα ≡ (xα − rα (τ 0))
Thus from equation (8 and 7), we find

dAµ = ∂ν

(
quµ

uβ∆xβ

)
dxν +

d

dτ 0

(
quµ

uβ∆xβ

)
dτ 0

= quµ

{
−uβ∂ν∆xβ
[uγ∆xγ]

2

}
dxν + q

{
aµ

uβ∆xβ
− uµa

β∆xβ + uβ (−uβ)

[uγ∆xγ]
2

}
dτ 0

Note that

∂ν∆xβ =
∂

∂xν
(xβ − rβ (τ 0)) =

∂

∂xν
gβα (xα − rα (τ 0)) = gβαδ

α
ν = gβν

Now we insert the expression (10) for dτ 0, and factor a bit:

dAµ =
qdxν

[uγ∆xγ]
2

{
−uµuβgβν + ∆xν

(
aµ − uµa

β∆xβ − uβuβ
uε∆xε

)}
=

qdxν

[uγ∆xγ]
2

{
−uµuν + ∆xν

(
aµ + uµ

c2 − aβ∆xβ
uε∆xε

)}
So

∂Aµ

∂xν
=

q

[uγ∆xγ]
2

{
−uµuν + ∆xν

(
aµ + uµ

c2 − aβ∆xβ
uε∆xε

)}
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Now we compute the field tensor components

F µν =
∂Aν

∂xµ
− ∂Aµ

∂xν

The symmetric term uµuν will cancel in the subtraction, leaving

F µν =
q

[uγ∆xγ]
2

{
∆xµaν −∆xνaµ +

c2 − aβ∆xβ
uε∆xε

(uν∆xµ − uµ∆xν)

}
(11)

Now, using the notation in the diagram above,

#
∆x = R (1, ñ)
#
u = cγ

(
1, β̃

)
and

#
a =

d
#
u

dτ
= γ

d
#
u

dt
= cγ

(
dγ

dt
, β̃
dγ

dt
+ γ

dβ̃

dt

)
and

dγ

dt
= γ3~β · d

~β

dt

9



so
#
a = cγ2

(
γ2~β·d

~β

dt
, γ2

(
~β·d

~β

dt

)
~β +

d~β

dt

)
(12)

Then we can compute the dot products

uγ∆xγ = cγR
(

1− ~β · n̂
)

and

aβ∆xβ = cγ2

(
γ2~β·d

~β

dt
, γ2

(
~β·d

~β

dt

)
~β +

d~β

dt

)
·R (1, ~n)

= cγ2R

(
γ2~β·dβ̃

dt
− γ2

(
~β·d

~β

dt

)
~β · n̂− d~β

dt
· n̂
)

= cγ2R

(
γ2~β·d

~β

dt

(
1− ~β · n̂

)
− d~β

dt
· n̂
)

Then from (11), and writing

K =
q[

cγR
(

1− ~β · n̂
)]2 (13)

we have

F µν = K

{
∆xµaν −∆xνaµ+

(uν∆xµ−uµ∆xν)

cγR(1−~β·n̂)

(
c2 − cγ2R

(
γ2~β·d~β

dt

(
1− ~β · n̂

)
− d~β

dt
· n̂
)) }

= K

∆xµaν −∆xνaµ + (uν∆xµ − uµ∆xν)

 c+ γ2Rd~β
dt
· n̂

γR
(

1− ~β · n̂
)−γ3~β·d

~β

dt

(14)
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The top row is

F 0i = K

∆x0ai −∆xia0 +
(
ui∆x0 − u0∆xi

) c+ γ2Rd~β
dt
· n̂

γR
(

1− ~β · n̂
)−γ3~β·d

~β

dt


= K

R
(
ai − nicγ4~β · d

~β

dt

)
+ cγR

(
βi − ni

) c+ γ2Rd~β
dt
· n̂

γR
(

1− ~β · n̂
)−γ3~β·d

~β

dt


= KcR

γ2

(
γ2

(
~β·d

~β

dt

)
βi +

dβi

dt

)
− niγ4~β·d

~β

dt
+
(
βi − ni

) c+ γ2Rd~β
dt
· n̂

R
(

1− ~β · n̂
)−γ4~β·d

~β

dt


where we used (12) for ~a. Then, inserting (13), the electric field is given by

Ei = −F 0i

= γ2KcR

(ni − βi)
γ2~β·d

~β

dt
+

c+ γ2Rd~β
dt
· n̂

γ2R
(

1− ~β · n̂
)−γ2~β·d

~β

dt

− dβi

dt


=

q

cR
(

1− ~β · n̂
)2

(ni − βi) c+ γ2Rd~β
dt
· n̂

γ2R
(

1− ~β · n̂
) − dβi

dt

 (15)

We may divide this result into two parts:

Ei
coulomb =

q

γ2R2
(

1− ~β · n̂
)3

(
ni − βi

)
This field has the usual 1/R2 dependence and is in fact the same as Jackson’s
equation 11.154. (See Jackson page 664 for the details.) The other term is
the radiation field: it depends on the particle’s acceleration.

Ei
rad =

q

cR
(

1− ~β · n̂
)2

(ni − βi) d~β
dt
· n̂(

1− ~β · n̂
) − dβi

dt

 (16)

It decreases as 1/R rather than 1/R2, and so dominates the Coulomb field
at large distances. We can simplify the expression by noting that:

n̂×
[(
n̂− ~β

)
× d~β

dt

]
=
(
n̂− ~β

)(
n̂·d

~β

dt

)
− d~β

dt

(
1− ~β · n̂

)
11



Thus

~Erad =
q

cR
(

1− ~β · n̂
)3 n̂×

[(
n̂− ~β

)
× d~β

dt

]
(17)

Remember: everything is evaluated at tretarded. Also notice that ~Erad is per-
pendicular to n̂, and is proportional to the acceleration d~β/dt.
The magnetic field is given by:

~B =
(
−F 23, F 13,−F 12

)
For example:

Bx = −F 23

= −K

∆x2a3 −∆x3a2 +
(
u3∆x2 − u2∆x3

) c+ γ2Rd~β
dt
· n̂

γR
(

1− ~β · n̂
)−γ3~β · d

~β

dt


= −K

n2a3 − n3a2 +
(
u3n2 − u2n3

) c+ γ2Rd~β
dt
· n̂

γR
(

1− ~β · n̂
)−γ3~β·d

~β

dt


=

−q

cγR
(

1− ~β · n̂
)2


γ3
(
~β·d~β

dt

) (
n2β3 − n3β2

)
+ γ

(
n2 dβ

3

dt
− n3 dβ

2

dt

)
+
(
β3n2 − β2n3

)( c+γ2R d~β
dt
·n̂

γR(1−~β·n̂)
−γ3~β·d~β

dt

) 
The first and last terms cancel. Thus:

~B =
−q

cγR
(

1− ~β · n̂
)2

 c+ γ2Rd~β
dt
· n̂

γR
(

1− ~β · n̂
) n̂× ~β + γn̂× d~β

dt


Again we may divide the result into two parts:

~BB-S=
q

γ2R2
(

1− ~β · n̂
)3
~β × n̂

This term, which goes as 1/R2, is the usual Biot -Savart law result, with rel-
ativistic corrections. (Compare J eqn 11.152 and our expression for ~Ecoulomb)
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The radiation term is:

~Brad =
−q

cR
(

1− ~β · n̂
)2

 d~β
dt
· n̂(

1− ~β · n̂
) n̂× ~β + n̂× d~β

dt


= −n̂× q

cR
(

1− ~β · n̂
)2

 d~β
dt
· n̂(

1− ~β · n̂
)~β +

d~β

dt


= n̂× ~Erad

where we used equation (16) for the electric field.

5 Radiated power

The Poynting vector for the radiation field is

~S =
c

4π
~Erad × ~Brad

=
c

4π
~Erad ×

(
n̂× ~Erad

)
=

c

4π
E2
radn̂

=
c

4π

 q

cR
(

1− ~β · n̂
)3 n̂×

[(
n̂− ~β

)
× d~β

dt

]
2

n̂

=
q2

4πR2c
(

1− ~β · n̂
)6

∣∣∣∣∣n̂×
[(
n̂− ~β

)
× d~β

dt

]∣∣∣∣∣
2

n̂

Thus the power radiated per unit solid angle is:

dP

dΩ
= R2~S · n̂

=
q2

4πc
(

1− ~β · n̂
)6

∣∣∣∣∣n̂×
[(
n̂− ~β

)
× d~β

dt

]∣∣∣∣∣
2

(18)
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For non-relativistic motion, β � 1, we retrieve the Larmor formula (704
wavemks notes eqn 35 with a units change):

dP

dΩ
=

q2

4πc

∣∣∣∣∣n̂×
[
n̂× d~β

dt

]∣∣∣∣∣
2

=
q2

4πc3
a2 sin2 θ

where a = dv/dt is the usual 3-acceleration and θ is the angle between ~a and
n̂. The total power radiated in the non-relativistic case is:

P =

∫
dP

dΩ
dΩ =

∫ +1

−1

dµ

∫ 2π

0

dφ
q2

4πc3
a2
(
1− µ2

)
=

q2

2c3
a2

(
µ− µ3

3

)∣∣∣∣+1

−1

=
2q2

3c3
a2 (19)

When β is not small, there are important changes. The denominator
of equation (18) gets small when ~β · n̂ is close to 1, that is for direction of
propagation close to the particle’s velocity ~β. Thus the radiation is strongly
beamed along the direction of the particle’s motion.

5.1 Covariant generalization

From problem 12.15 we know that
∫

Θ0αdV transforms as a vector. Thus∫
Θ00dV transforms in the same way as x0 = ct. Thus the ratio, which is

the power, is a Lorentz invariant. But in the instantaneous rest frame of the
particle,

aαaα = −~a · ~a = −a2

So we can write eqn (19) as

P = −2

3

q2

c3
aαaα

= −2

3

q2

c

γ̇2 −
(
γ̇~β + γ

d~β

dτ

)2

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where dot means d/dτ . The term is parentheses simplifies as follows:

γ̇2 −
(
γ̇~β + γ

d~β

dτ

)2

= γ̇2 −
(
γ̇2β2 + γ2β̇

2
+ 2γγ̇~β · d

~β

dτ

)

=
1

γ2
γ̇2 − γ2β̇

2 − 2γγ̇~β · d
~β

dτ

But

γ̇ = γ3~β · d
~β

dτ

So

() = γ4

(
~β · d

~β

dτ

)2

− γ2β̇
2 − 2γ4

(
~β · d

~β

dτ

)2

= −γ2

β̇2
+ γ2

(
~β · d

~β

dτ

)2


Giving

P =
2

3

q2

c
γ2

β̇2
+ γ2

(
~β · d

~β

dτ

)2


which is positive, as expected. Now let’s look at the two special cases:

1. ~β parallel to d~β/dt :

P =
2

3

q2

c
γ2β̇

2
(

1 +
β2

1− β2

)
=

2

3

q2

c
γ4β̇

2

where β̇ = dβ/dτ = γdβ/dt = γa/c. Thus

P =
2

3

q2

c3
γ6a2 (20)

2. ~β perpendicular to d~β/dt :

P =
2

3

q2

c
γ2β̇

2
=

2

3

q2

c3
γ4a2 (21)
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Thus we get more radiated power per unit acceleration if ~a is parallel to
~β (linear motion). However, if we relate the power to the force acting on
the particle, (see exam problem),we get a different interpretation.

1. ~F parallel to ~β. In this case a = F/mγ3 and so

P =
2

3

q2

c3

(
F

m

)2

2. ~F perpendicular to ~β. In this case a = F/mγ and so

P =
2

3

q2

c3
γ2

(
F

m

)2

So the power radiated per unit force is greater when ~F is perpendicular
to ~β (circular motion).
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