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1 The Green’s function

In Lorentz gauge, we obtained the wave equation:
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The corresponding Green’s function for the problem satisfies the simpler

differential equation
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and the boundaries are at infinity. Thus D can depend only on the vector
/
=7 —1. Wefind D by takmg the 4-dimensional Fourier transform:
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(Note that k % = = “c(t - -k (F—T)=w(t—t)—Fk-(T— 7). This
explains the usual convention of transforming the time variable with the
opposite sign from that for the space variable.)

Also recall the delta-function integral:
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The transformed differential equation reads:
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and transforming back, we get:
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We'll do the frequency integral first. For ¢ < t/, we close the contour with a
big semi-circle in the upper half plane, while for ¢t > ¢’ we close downward.
The integrand has two poles, at w = +ck, both on the real axis. Since the
result must be zero for t < ¢ (event precedes its source) we must evelaute
the integral along the real axis by deforming the path to go above the two
poles.

Contour for inverting the transform

For t > t', we use the lower contour and we traverse it clockwise. Each of
the poles is simple, and the residues are
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Then we have:
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The first exponential represents an outgoing wave, while the second repre-
sents an incoming wave.

Now do the remaining integrals, we choose our polar axis for k along the
vector 2= & — 2. Then:
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The second term can never contribute since both z and t — ¢’ are positive.
Thus we finally have:
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and thus the solution to equation (1) is:
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Note: Jackson prefers to write this using the fully covariant expression
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where we wrote t* =t — ', R = |x — X|, and used the result
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This is a covariant expression in spite of the explicit appearance of ¢ and ¢,
since the step function serves to locate the result on the forward light cone
from the source event, and this is an invariant statement. The expression for
the potential becomes:
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2 Charge density and current for a point charge.

The charge and current densities are given by
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and so the 4-vector is
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We can write this covariantly as
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where
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is the charge’s position vector at time ¢y3. To see why this works, note that
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which agrees with equation (4).

3 Radiation from a moving charge- the po-
tential

We insert the current vector (5) into the expression (3) for the potential:
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Using the delta function, the integration over T s easy:
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Now again we need to evaluate the delta function of a function- here the

2
function f (1) = (qf — T (T)) = (2% — 2§) (x4 — Toa) - The derivative
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and the zeros are those values of 7 for which (z* — z§) (zo — Z0a) = 0. Ex-
panding this out, we get
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Only the positive value contributes to the integral because of the factor
© (t —to (7)) . (The event is on the positive light cone from the source.) Thus:
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the retarded time.
Then the denominator is
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Then
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These are the Lienard-Wiechert potentials. They may also be written co-
variantly as:
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using (6), and with
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all evaluated at the retarded time.

4 Fields due to a moving charge

To compute the fields from the potentials (2 or 7), we need to take derivatives.
That is, we need to compare the potentials at two nearby events. The
potential A* changes as x® changes both because of its explicit dependence
on x“ but also because of the implicit dependence on 7 () — that is because
of the need to look back along the light cone to find the source event.
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Differentiating the light cone constraint (z* — r® (7¢)) (x4 — 7o (70)) = 0, wWe
get:
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and from the definition of the particle’s velocity
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where I defined Az® = (x* — r* (7))
Thus from equation (8 and 7), we find
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Now we insert the expression (10) for dry, and factor a bit:
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Now we compute the field tensor components
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The symmetric term u*u” will cancel in the subtraction, leaving
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Now, using the notation in the diagram above,
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Then we can compute the dot products
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Then from (11), and writing
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we have
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The top row is
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where we used (12) for @. Then, inserting (13), the electric field is given by
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We may divide this result into two parts:
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This field has the usual 1/R? dependence and is in fact the same as Jackson’s
equation 11.154. (See Jackson page 664 for the details.) The other term is
the radiation field: it depends on the particle’s acceleration.

i q i _ pi d_f'ﬁ _dﬁi
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It decreases as 1/R rather than 1/R? and so dominates the Coulomb field
at large distances. We can simplify the expression by noting that:
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Thus
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Remember: everything is evaluated at t,ciarqeq. Also noticg that Erad is per-
pendicular to 7, and is proportional to the acceleration df/dt.
The magnetic field is given by:
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The first and last terms cancel.

Thus:
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Again we may divide the result into two parts:
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This term, which goes as 1/R?, is the usual Biot -Savart law result, with rel-
ativistic corrections. (Compare J eqn 11.152 and our expression for Eeouomb)
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The radiation term is:
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where we used equation (16) for the electric field.
5 Radiated power
The Poynting vector for the radiation field is
S_” = iFjrad X Erad
4dr
= iﬁrad X (ﬁ X Erad)
c .
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For non-relativistic motion, f < 1, we retrieve the Larmor formula (704
wavemks notes eqn 35 with a units change):
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where a = dv/dt is the usual 3-acceleration and 6 is the angle between @ and

n. The total power radiated in the non-relativistic case is:
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When g is not small, there are important changes. The denominator
of equation (18) gets small when (5 - 72 is close to 1, that is for direction of
propagation close to the particle’s velocity . Thus the radiation is strongly
beamed along the direction of the particle’s motion.

(19)

5.1 Covariant generalization

From problem 12.15 we know that [ ©°*dV transforms as a vector. Thus
[ ©%dV transforms in the same way as 2° = ¢t. Thus the ratio, which is
the power, is a Lorentz invariant. But in the instantaneous rest frame of the

particle,
2
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So we can write eqn (19) as
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where dot means d/dr. The term is parentheses simplifies as follows:
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which is positive, as expected. Now let’s look at the two special cases:

1. B parallel to dB/dt :

o3 (o) -
where 3 = df3/dr = ~df/dt = ya/c. Thus
:§§¢f (20)
2. /3 perpendicular to df3 /dt :
19=§§W%2=§§W%2 (21)
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_ Thus we get more radiated power per unit acceleration if @ is parallel to
£ (linear motion). However, if we relate the power to the force acting on
the particle, (see exam problem),we get a different interpretation.

1. F parallel to 5. In this case a = F/m~? and so

2 2
p_ 2 (L
3c3 \m

2. F perpendicular to B In this case a = F//m~y and so
2 ¢* F\?
P=14%=—
33 (m)

So the power radiated per unit force is greater when F is perpendicular
to § (circular motion).
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