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1 A wave signal
An electromagnetic wave signal may be represented by a function of space and time

u(�x,t) where u might be one component of the electric field, for example. Then we can
write this function in terms of its Fourier transform:

u(�x,t) =
1

(2π)2

]
all ω and k space

A(�k,ω) exp
�
i�k · �x− iωt

�
dωd�k

The dispersion relation for the wave gives a relation (such as eqn 12 in the plasma wave
notes) between ω and �k which allows us to write the integral in terms of �k alone1:

u(�x,t) =
1

(2π)2

]
all k space

A(�k) exp
k
i�k · �x− iω

�
�k
�
t
l
d�k

Now let’s simplify by putting the x−axis along the direction of propagation and letting
the whole problem be one-dimensional, so that u = u (x, t) . (We also lose two factors of√
2π.)

u(x,t) =
1

2π

] +∞

−∞
A(k) exp [ikx− iω (k) t] dk (1)

Evaluating at t = 0, we get

u(x,0) =
1

2π

] +∞

−∞
A(k) exp (ikx) dk

and it is tempting to invert this to get the Fourier amplitude A (k) (see 5 below). But there
is a second initial condition: ∂u

∂t

��
t=0

. So we have to take

u(x, t) = Re
1

2π

] +∞

−∞
A(k) exp [ikx− iω (k) t] dk

=
1

4π

] +∞

−∞
{A (k) exp [ikx− iω (k) t] +A(k)∗ exp [iω (k) t− ikx]} dk (2)

1 Effectively, A �k,ω = A �k δ ω − ω �k , as in Lea Ch 7.
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Now we let κ = −k in the second term.
u (x, t) =

1

4π

�] +∞

−∞
A(k) exp [ikx− iω (k) t] dk −

] −∞
+∞

A(−κ)∗ exp [iκx+ iω (−κ) t] dκ
�

=
1

4π

] +∞

−∞
{A(k) exp [ikx− iω (k) t] +A(−k)∗ exp [ikx+ iω (k) t]} dk (3)

ω is an even function of k because the dispersion relation does not depend on the forward or
backward direction of propagation. Then, evaluating at t = 0, we get

u(�x, 0) =
1√
2π

1

2
√
2π

] +∞

−∞

k
A(�k) +A(−�k)∗

l
exp (ikx) dk

Inverting the transform:
1

2
√
2π

�
A(k) +A (−k)∗� = 1√

2π

] +∞

−∞
u(x,0) exp (−ikx) dx (4)

If A(−k) = A (k)∗ , then

A(k) =

] +∞

−∞
u( x,0) exp (−ikx) dx (5)

which we would have obtained by the naive approach. To make use of the second initial
condition, we take the time derivative of (3).
∂

∂t
u(x,t) =

1

4π

] +∞

−∞

�−iωA(k) exp [ikx− iω (k) t] +A (−k)∗ iω exp (−ikx+ iωt)� dk
∂

∂t
u(x,0) =

1

4π

] +∞

−∞
−iω �A(k)−A (−k)∗� exp (ikx) dk

Inverting, we have:

− iω
2

�
A(k)−A (−k)∗� = ] +∞

−∞

∂

∂t
u(x, 0) exp (−ikx) dx (6)

Combining the two relations (4) and (6) to eliminate A (−k)∗, we have

A (k) =

] +∞

−∞

�
u(x,0)− 1

iω

∂

∂t
u(x,0)

�
exp (−ikx) dx (7)

which is Jackson equation 7.91 modulo a factor of
√
2π. (This arises because I started with

the transform over space and time, whereas J used the transform over space alone.) We
regain equation (5) if ∂u/∂t = 0 at t = 0.
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2 Gaussian Pulse
To simplify the algebra in this section, let’s assume ∂

∂tu(x,0) = 0. Generally the wave
is sent at a “carrier frequency” ω0 with a corresponding k0 so that ω0 = ω (k0) , and the
Fourier amplitude A (k) peaks at k0. For example, a Gaussian pulse with a carrier frequency
ω0 is written:

u (x, 0) = u0 cos (k0x) exp

�
−x

2

a2

�
(8)
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Its transform is:

A (k) =

] +∞

−∞
u0 cos (k0x) exp

�
−x

2

a2

�
exp (−ikx) dx

=

] +∞

−∞

u0
2

�
eik0x + e−ik0x

�
exp

�
−x

2

a2

�
exp (−ikx) dx

=
u0
2

] +∞

−∞

k
e−i(k−k0)x + e−i(k0+k)x

l
exp

�
−x

2

a2

�
dx (9)

So we have two integrals of identical form. To do each, we complete the square (see Lea
Example 7.2):

−x
2

a2
− i (k − k0)x = − 1

a2

%
x2 + i (k − k0)a2x+

�
i
(k − k0)a2

2

�2
−
�
i
(k − k0)a2

2

�2&

= − 1
a2

%�
i
a2 (k − k0)

2
+ x

�2
+
1

4
a4 (k − k0)2

&
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Thus the first term in the integral (9) is:

u0
2
exp

�
−a

2

4
(k − k0)2

�] +∞

−∞
exp

%
− 1
a2

�
i
a2 (k − k0)

2
+ x

�2&
dx

=
u0
2
exp

�
−a

2

4
(k − k0)2

�
a

] +∞+iγ

−∞+iγ
exp

�−v2� dv
=

u0
2
exp

�
−a

2

4
(k − k0)2

�
a
√
π

=

√
π

2
au0 exp

�
−a

2

4
(k − k0)2

�
where we set v =

�
ia

2(k−k0)
2 + x

�
1
a = iγ + x/a,and used the fact that the integral of the

Gaussian is independent of the path between ±∞. (See Lea Ch 7 pg 328.) To obtain the
second term we replace k0 with −k0. Thus the result for A (k) is two Gaussians, centered at
k = ±k0, and each of width 2/a.

A (k) = A1 (k) +A2 (k) =
√
πa
u0
2

�
exp

�
−a

2

4
(k − k0)2

�
+ exp

�
−a

2

4
(k + k0)

2

��
(10)

3 Group velocity
For a Gaussian pulse, the integral in (1) has two terms. To evauate the first term, we

write ω (k) in a Taylor series centered at k0.

ω (k) = ω0 + (k − k0) dω
dk

����
k0

+
1

2
(k − k0)2 d

2ω

dk2

����
k0

+ ...

Substituting ω (k) into the expression for u (x, t) (1),

u1 =

] +∞

−∞

A1(k)

2π
exp

ikx− it
ω0 + (k − k0) dω

dk

����
k0

drop

+
(k − k0)2

2

d2ω

dk2

����
k0

+ ..


dk
(11)

and dropping the term in ω33, we have:

u1(x,t) * 1

2π
exp

%
−i
#
ω0 − k0 dω

dk

����
k0

$
t

&] +∞

−∞
A1(k) exp

#
ikx− ik dω

dk

����
k0

t

$
dk+· · ·

u1(x,t) = exp

%
−i
#
ω0 − k0 dω

dk

����
k0

$
t

&
1

2π

] +∞

−∞
A1(k) exp

%
ik

#
x− dω

dk

����
k0

t

$&
dk

= exp

%
−i
#
ω0 − k0 dω

dk

����
k0

$
t

&
× u1

#
x− dω

dk

����
k0

t, 0

$
(12)

where we used eqn (1) again in the last step, with x → x− dω
dk

��
k0
t and t → 0. . Thus to
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first order in the expansion of ω (k) , u (x, t) equals a phase factor e−iφ times u (x− vgt, 0) ,
that is, at time t the signal looks like the pulse at t = 0 translated at speed vg, where

vg =
dω

dk

����
k0

(13)

is the group speed. The phase φ = (ω0 − vgk0) t indicates that the carrier wave shifts
within the Gaussian envelope.
To evaluate the second integral we expand ω (k) in a Taylor series centered at −k0, and

obtain the same result.

4 Pulse spreading
For some waves with d2ω/dk2 = 0, there is only a first order term in the Taylor series

for ω (k). But for other waves the higher order terms produce corrections to the first order
result. Generally these terms lead to both spreading and distortion of the pulse shape. For
example, consider the Whistler (Plasmawaves notes eqn 34):

k =
ωp
c

u
ω

Ω
or

ω = Ω
k2c2

ω2p
The group velocity for this wave is:

vg =
dω

dk
= 2Ω

kc2

ω2p
(14)

and the second derivative is
v3g =

d2ω

dk2
= 2Ω

c2

ω2p
(15)

All further derivatives are zero. Thus from (11), the exact expression for u in this case is:

u (x, t) = exp

%
−i
#
ω0 − k0 dω

dk

����
k0

$
t

&
×

1

2π

] +∞

−∞
A(k) exp

%
ik

#
x− dω

dk

����
k0

t

$
− i (k − k0)

2

2

d2ω

dk2

����
k0

t

&
dk

u (x, t) = exp

%
−i
#
ω0 − k0 dω

dk

����
k0

$
t

&
×

1

2π

] +∞

−∞
A(k) exp

�
ik (x− vgt)− i

2

�
k2 − 2kk0 + k20

�
v3gt
�
dk

= exp

%
−i
#
ω0 − k0vg +

k20v
3
g

2

$
t

&
1

2π

] +∞

−∞
A(k) exp

�
ik
�
x+ k0v

3
gt− vgt

�− i
2
k2v3gt

�
dk

where vg and v3g are given by equations (14) and (15) with k = k0.
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Now if we use the Gaussian pulse (10) as an example, we get:

u (x, t) = exp

%
−i
#
ω0 − k0vg +

k20v
3
g

2

$
t

&
1

2π
I (16)

where

I =
√
π

] +∞

−∞

au0
2

 exp
�
−a24 (k − k0)2

�
+exp

�
−a24 (k + k0)2

�  exp�ik �x± k0v3gt− vgt�− i2k2v3gt
�
dk

Again there are two terms, differing only in the sign of k0 in the Gaussian, and we evaluate
these using the Taylor series about ±k0.

I =

√
π

2
au0 (I+ + I−)

Looking at the first term:

I+ =

] +∞

−∞
exp

�
−a

2

4

�
k2 − 2kk0 + k20

�
+ ik

�
x+ k0v

3
gt− vgt

�− i

2
k2v3gt

�
dk

= exp

�
−a

2k20
4

�] +∞

−∞
exp

�
−k2

�
a2

4
+
i

2
v3gt
�
+ k

�
i
�
x+ k0v

3
gt− vgt

�
+
k0a2

2

��
dk

To simplify the notation, we let s = x − vgt and v3gt = αa2. Then the argument of the
exponential in the integrand is:

−k2
�
a2

4
+
i

2
αa2

�
+ k

�
i
�
s+ k0αa

2
�
+
k0a

2

2

�
= −a

2

4
(1 + 2iα)

�
k2 + 2k

�
k0 +

2is

a2 (1 + 2iα)

��
Completing the square, the term in curly brackets is

k2 + 2k

�
2is

a2 (1 + 2iα)
+ k0

�
+

�
2is

a2 (1 + 2iα)
+ k0

�2
−
�

2is

a2 (1 + 2iα)
+ k0

�2
=

�
k +

2is

a2 (1 + 2iα)
+ k0

�2
−
�

2is

a2 (1 + 2iα)
+ k0

�2
We can do the integral by making the change of variable:

ξ =
a

2

√
1 + 2iα

�
k +

2is

a2 (1 + 2iα)
+ k0

�
Then:

I+ = exp

�
−a

2k20
4

�
exp

+
a2

4
(1 + 2iα)

�
2is

a2 (1 + 2iα)
+ k0

�2,
2

a
√
1 + 2iα

] +∞+iγ

−∞+iγ
e−ξ

2

dξ

where the path of integration is again moved off the real axis, but the result is still
√
π. Thus:

I+ =
2
√
π

a
√
1 + 2iα

exp

�
−a

2k20
4
− s2

a2 (1 + 2iα)
+ isk0 +

k20a
2

4
(1 + 2iα)

�
(17)

=
2
√
π

a
√
1 + 2iα

exp

�
− s

2 (1− 2iα)
a2 (1 + 4α2)

+ isk0 +
i

2
αk20a

2

�
(18)
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And the argument of the exponential in u (16) is:

i

�
−ω0t+ k0vgt− k

2
0a
2α

2
+ k0s+

αk20a
2

2

�
− s

2 (1− 2iα)
a2 (1 + 4α2)

= i (−ω0t+ k0x)− s2 (1− 2iα)
a2 (1 + 4α2)

= i (k0x− ω0t)− s2

a2 (1 + 4α2)
+

2iαs2

a2 (1 + 4α2)

Thus

u (x, t) =
√
π
au0
2

1

2π
exp [i (k0x− ω0t)] exp

�
− s2

a2 (1 + 4α2)

�
×

exp

�
iα

2s2

a2 (1 + 4α2)

�
2
√
π

a
√
1 + 2iα

+ (k0 →−k0)

=
u0
2

exp [i (k0x− ω0t)]

(1 + 4α2)1/4
exp

#
− (x− vgt)2
a2 (1 + 4α2)

$
e−iφ + (k0 →−k0) (19)

We may interpret this expression as folows:
• Initial wave form at frequency ω0. This is the carrier.

• Envelope peaks at x = vgt due to its travelling at the group speed.

• Envelope spread by factor
√
1 + 4α2 where α = v3gt/a2

• Amplitude decreased by a similar factor
�
1 + 4α2

�1/4
.

• Overall phase factor

φ = −α 2s2

a2 (1 + 4α2)
+
tan−1 (2α)

2

approximately proportional to α ∝ t.
At large times the pulse width grows roughly linearly with time. a (t) * 2a (0)α =

2v3gt/a (0) . Notice that (19) gives the correct result (8) at t = 0.

5 Arrival of a signal
The previous analysis shows the shape of the signal over all space as a function of time.

But this is not usually what we observe. Let us now consider a signal generated at x = 0
over a period of time. We want to see what kind of a signal arrives at a distant point x = X
as a function of time. So instead of using the dispersion relation in the form ω (k) we instead
think of it as k (ω) . Then:

u(x,t) =
1√
2π

] +∞

−∞
A(ω) exp [ik (ω)x− iωt] dω

where in general k(ω) is complex.
As we have seen, A (ω) is usually a smooth function, somewhat peaked around the
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carrier frequency ω0. The exponential oscillates, so it tends to make the value of the integral
small. However, when the exponent stays almost constant over a range of ω, we will have a
subtantial contribution to the integral. This happens when the phase is stationary. (See Lea
Optional Topic D section 2)

d

dω
[k (ω)x− ωt] = 0

x
dk

dω
− t = 0

or
x =

dω

dk
t = vgt (20)

Thus the major contribution to the integral is from the frequency that, at time t, has its group
speed equal to x/t. Put another way, the signal at that frequency, travelling at the group
speed, has just reached the observation point.
To find the received signal, we must evaluate the integral. Again we expand k (ω) in a

Taylor series, this time about the stationary frequency. as determined by equation (20).

k (ω) = ks + (ω − ωs)
dk

dω

����
ωs

+
1

2
(ω − ωs)

2 d
2k

dω2

����
ωs

+ · · ·

where ks = k (ωs) , giving

u(x,t) =
1√
2π

] +∞

−∞
A(ω) exp

+
i

%
ks + (ω − ωs)

dk

dω

����
ωs

+
(ω − ωs)

2

2

d2k

dω2

����
ωs

+ · · ·
&
x− iωt

,
dω

Now use the stationary phase condition (20):

u(x,t) =
1√
2π

] +∞

−∞
A(ω) exp

+
i

%
ks − ωs

vg
+
1

2
(ω − ωs)

2 d
2k

dω2

����
ωs

+ ..

&
vgt

,
dω

Since the exponential guarantees that only frequencies near ωs contribute, we may pull out
the slowly varying amplitude, as well as the terms in the exponential that are independent of
ω:

u(x,t) * A(ωs)√
2π

exp [i (ksvg − ωs) t]

] +∞

−∞
exp

%
i

2
(ω − ωs)

2 d
2k

dω2

����
ωs

vgt

&
dω

To do the integral, change variables to:

ξ = (ω − ωs)

v
−i
2

d2k

dω2

����
ωs

vgt = e
−iπ/4 (ω − ωs)

v
d2k

dω2

����
ωs

vgt

2

Then

I =

] +∞

−∞
exp

%
i

2
(ω − ωs)

2 d
2k

dω2

����
ωs

vgt

&
dω =

eiπ/4t
1
2
d2k
dω2

��
ωs
vgt

] +∞+iγ

−∞+iγ
e−ξ

2

dξ

=

v
2π

d2k
dω2

��
ωs
vgt
eiπ/4
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and so, incorporating the result (20), we have

u(x,t) =
A(ωs)t
d2k
dω2

��
ωs
x
exp

k
i (ksx− ωst) + i

π

4

l
(21)

Again we see the carrier wave, modulated by an envelope that changes in time, and with an
additional phase change. (Remember that ωs is a function of time.)

To see how this works out, again look at the whistler. The stationary phase condition is
(equations 14 and 20)

x = 2Ω
kc2

ω2p
t =

ωp
c

u
ω

Ω
2Ω
c2

ω2p
t

= 2

√
ωΩ

ωp
ct

and thus

ωs =
ω2p
Ω

x2

4c2t2
which decreases from a large value toward zero as t increases. For this wave the signal (21)
is given by:

u(x,t) =

v
2Ω
c2

ω2p

A(
ω2p
Ω

x2

4c2t2 )√
x

exp
k
i (ksvg − ωs) t+ i

π

4

l
=

c

ωp

u
2Ω

x
A(

ω2p
Ω

x2

4c2t2
) exp

k
i (ksvg − ωs) t+ i

π

4

l
If A is a Gaussian as in (10), then

u(x,t) =
c

ωp

u
2Ω

x
A0 exp

−η#ω2p
Ω

x2

4c2t2
− ω0

$2 exp ki (ksvg − ωs) t+ i
π

4

l
where η is a constant.

At fixed x, we get something like this:

ct/x

A

The signal grows from zero to an asymptotic value, until the analysis breaks down at low
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frequency (large t). (Remember: we neglected ion motion in getting the dispersion relation.)
Here’s another way to look at it. Consider the plasma waves (Plasmawave notes eqn 12):

c2k2 = ω2 − ω2p

For this wave

2c2k
dk

dω
= 2ω

c
dk

dω
= c

ω

kc2
=

ωt
ω2 − ω2p

=
ω/ωpt

(ω/ωp)
2 − 1

which looks like this:

0

1

2

3

4

5

k/dw

0.5 1 1.5 2 2.5 3w/wp

The stationary phase condition is
ct

x
= c

dk

dω
There is no signal at a fixed x = x0 prior to t = t0 = x0/c. The signal begins at infinite
frequency, and moves to lower frequency as time increases, asymptotically reaching ωp.
The horizontal line in the graph represents ct/x = 2 and the intersection of the two lines is
the observed frequency at this time.
For a more complicated dispersion relation, the signal can be more complicated.

Consider the RHC wave propagated along �B. (Plasmawave notes eqn 28 with the minus
sign.) Then:

c2k2 = ω2 − ω2pω

ω −Ω
2c2k

dk

dω
= 2ω − ω2p

ω − Ω +
ω2pω

(ω −Ω)2

= 2ω − ω2p
ω − Ω

�
1− ω

ω −Ω
�

= 2ω +
ω2pΩ

(ω −Ω)2
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and thus:

c
dk

dω
=

1

ck

#
ω +

1

2

ω2pΩ

(ω −Ω)2
$

=
1t

ω2 − ω2pω

ω−Ω

%
ω +

1

2

ω2pΩ

(ω − Ω)2
&

=
1t

1− ω2p
ω(ω−Ω)

%
1 +

1

2

ω2pΩ/ω

(ω −Ω)2
&

Now let ωp/Ω = y and ω/Ω = z Then

c
dk

dω
=

1t
1− y2

z(z−1)

#
1 +

1

2

y2

z (z − 1)2
$

With y = 2, the diagram looks like:

0

1

2

3

4

5

6

cdk/dw

1 2 3 4 5z

As t increases we first obtain a signal at one frequency (dashed line) and later at 3
frequencies, two decreasing and one increasing (solid line) .
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