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1 Polarization

Here we want to investigate the vector nature of the E&M fields in a wave. As usual,
Maxwell’s equations tell the whole tale. In a source-free region:
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i.e. both E and B are perpendicular to E, and:
kx E=wB (1)
so B is also perpendicular to E. Now if we put the z—axis along E, k= kz, then we may
express the wave amplitudes as: B
. E() = Eli' + E23; .
and similarly for 5y. Finally we may allow for phase shifts by letting £; = Ejoe“ﬁj . Since
E and B are perpendicular, and have related magnitudes (by eqn (1), then
k k
Bg = _El and B1 = 7—E2
w w
so we can focus attention on the components of Ej.
1.1  Linear polarization

Remember that the real physical field is the real part of the complex number. If ¢; = ¢,,
then both components of E vary in phase, and F /FEy = Fy1q/FEs is constant in time and
space. Thus the electric field vector has a constant direction as its magnitude varies. The
wave is linearly polarized.



1.2 Elliptical polarization

If 5 = ¢1 + 5, then at z = 0 we find:

B = Re(Eloei(‘z’l_“’t)aAc + Egoei(‘b?_‘“t)gj) 2)
= Re(Ei0e @93 + Bapel(B+ 5915y if g, = ¢, + 1/2
= FEjpcos (¢ —wt)X — FEypsin (¢p; —wt)y = Frg cos (wt — ¢) X + Fag sin (wt — 1) §

As t increases from ¢, /w, E, decreases and E,, increases: The electric field vector rotates
counter-clockwise, and the tip of the vector traces out an ellipse as the vector rotates. This
is an elliptically polarized wave. When the amplitudes Eo and Fsg are equal, the curve is
a circle and we have a right-hand circularly polarized wave.. Stick the thumb of your right
hand in the direction of propagation (the z—direction in this case) and your fingers curl in

the direction that E rotates. If instead we take ¢g = ¢y — 5, then we get:

E = Eygcos (wt — ¢y) & — Eagsin (wt — ¢;) 9

and the y—component becomes increasingly negative: i.e. the vector rotates clockwise.
When the amplitudes F1o and Fsq are equal, the curve is a circle and we have left-hand
circular polarization.

1.3 Circular polarization
In the case of circular polarization, with F1g = FEa9 = Ey/ V2, we have
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so it is convenient to use the complex polarization vectors
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which have the orthogonality properties
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1.4 General case

Any wave may be decomposed into a sum of linearly polarized waves or a sum of circularly
polarized waves. In the most general case we have elliptical polarization with the axes of
the ellipse oriented at an angle # to the = and y axes, where 6 is unknown for the moment.
Given Fyg, Eag, ¢, and ¢,, we’d like to find the shape and orientation of the ellipse. It’s
most convenient to do the analysis using the circular polarization vectors (4). Let’s rewrite



E (eqn 2) in terms of ér and €., :
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where
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The magnitude is given by

1 . .
|Er| = % \/(E10 cos ¢y + Fap sin ¢2)2 + (Eqpsin ¢ — Eog cos ¢2)2
1 2 2 :
= 5 \/Em + B3 + 2E10E0 sin (65 — 61) (©)
and the phase by
Eigsin ¢y — Fag cos ¢y
t = 7
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For the left-hand component, we have
1 ,
By = 7 [E1o cos ¢y — Eagsin gy + i (Eosin ¢y + Eag cos ¢y)] = |EyL| ™
with
|EL| = L\/E‘2 +E2 — 2F10FE5 sin (¢2 — (;51) ®)
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If ¢2 - (1)1 = 7('/2, then |ER| = ElO + E20 and |EL| = |E10 - E20| . Additionally, if
E10 = Es, |EL| = 0 as expected for right circular polarization.
We may factor (5) to get:
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where the last line defines € and «. In particular, using

tan A + tan B
tan(A+B)=———
an (4 + B) 1—tanAtan B’



along with (7) and (9), we have
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Expanding the circular polarlzatlon vectors in (10), we get
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The physical field is the real part of (12):
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when wt = a/2 + xg. At the maximum, E makes angle § with the x—axis, where, from

(13),

E sin (a/2) + e sin (a/2) e
tanf = —% = = tan — 14
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The minimum occurs when
a+2(xg —wt) =
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So the minor axis is perpendicular to the major axis. Thus we have elliptical polarization
with major axis rotated through angle «/2 from the z-axis. (See eqn (11). 8 is zero if



|y — ¢o| = /2, as expected.) The ratio of major to minor axes is

Emax _ |ER| + |EL| _ 1 (15)
Ein ||ER| - |EL|| vV1-— e?

where e is the eccentricity.
1.5 Stokes Parameters

What do we actually observe? We can design our detectors to measure either linear or
circular polarizations. From those observations, we would like to determine the polarization
characteristics of the observed radiation. That is, we will observe

i-E=E,=ae®, §-E=E, = ay"

or
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(In our previous notation (F1g = a1 and ¢; = 01, Fag = as and ¢, = 5. I have now
switched to Jackson’s notation (pg301).)

The Stokes parameters are defined as:

so = |E2|+|E,|” =d}+ad3 = total intensity
o= (B IEP = -l

sy = 2Re(E,E,) = 2aiazcos (62 — 01)

s3 = 2Im (E;Ey) = 2ajazsin (52 - 51)

with a similar set for the circular polarizations. The four parameters are not independent:
3(2) = s% + s% + s%
They describe physical parameters as follows:

S1 . . .
— = percent linear polarization
50

From equation (11) we get

%2 _ tan(2 x angle of polarization ellipse)
$1
The eccentricity of the polarization ellipse is given by (equations 15, 6, and 8)
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Check: If §; = o then s9 = 2a;a9 and

2
\/87+ 83 = \/(a%fag) +4a2a2 = so

So we get e = 1, as expected. The polarization is linear with no circularly polarized
component.

See also Pacholczyk, Radio Astrophysics, Appendix I



