Perturbation theory for scattering in an almost
uniform medium

SM.Lea

Suppose we have a medium with average diel ectic constant ¢, and magnetic permesbility
Lo, but with € # g and 1 # p insmall regions. Note We arein Gaussian units. g is
NOT the Sl ¢, but the unperturbed val ue of ¢.

MaxwdI’s equationsfor this system are:

V-B= (1)
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(no free charge)
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VxE= —ZE (3)
and .
V x H= la—lt) @)
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together with
D=cE (5)
and
B=uH 6)

We want to separate out those regions which deviate from the uniform properties, so we
write:
D=D- €0E + €0E
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Then

where we used equation (3). Thus:
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where we used equation (2). Now we do the same kind of thing with B :
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(equation 4) Thus:
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and thus: )
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This equatlon showsthat the differences between the local value of D and its average value
Dae = eOE and between the locd value of B and its average value Bae = /LOH act as
sources for D.
Now let all quantities have the oscillating form e~%“?. The equation (7) becomes
(V2+k2) = -V x [§X(D’—50E_’>}—Z€O—WVX <§—,u0ﬁ)
C
where )
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k* = 2 W= 2

and v = ¢/ /;pgo 1S the wave speed in the medium. We can use the Green’sfunction for the

wave equation to obtain an expression for D :
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Of coursethisis not really a solution yet, because D appears on the right hand side as well.
Now we expect the solution to be aradiation field of the form
ikr
D=5y 4, —
sc r

where, from equation 8, the scattering amplitudeis:
o 1 , A oy =/ —/ — — EoW =, — —
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(We have made the usual approximations in evaluating ﬂ%ﬂ%ﬂ)' Now wedo the
”integration by parts” trick. Theintegral is of the form:
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Then we can doit again to get:

(ik)* 7 x <f«x / ei“"-fgdv>
Thus the expression for A is
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(Jackson and | differ by asign here.)
In this expression we can recognize the eledric dipole moment (pg 4 of your multipole

notes)
p= /e“&'i, (D — EOE) av

and the magnetic dipole moment (pg 7)

m= — ﬂ/e“ﬁj/ (E —,uoﬁ) dv
Ho
The differential cross section for scattering into polarization & is:
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Now to get an explicit solution we must gpproximate. We write
D =¢eyE + 6¢E
and similarly for B. Then
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where we can use the unperturbed fidd on theright hand side sinceit is multiplied by the
small quantity g—z Then the dipole moment is
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Similaly
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since, from Faraday’s law, ikig x E = i%By, and s0 %, /Jigeoig x Do = £9% By,

By = 4 /%DO, Then the scattering cross section is:
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1
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where
7= k(o ) -
If the wavdength A > the scale of the fluctuations de and op, then e*"* ~ 1, and we
have dipole rediation.
You will need equation (9) in problem 10.20.



