
Perturbation theory for scattering in an almost
uniform medium

S.M.Lea

Suppose we have a medium with average dielectic constant ε0 and magnetic permeability
µ0, but with ε 6= ε0 and µ 6= µ0 in small regions. Note: We are in Gaussian units. ε0 is
NOT the SI ε0, but the unperturbed value of ε.

Maxwell’s equations for this system are:
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together with
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We want to separate out those regions which deviate from the uniform properties, so we
write:
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where we used equation (3). Thus:
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where we used equation (2). Now we do the same kind of thing with ~B :
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and thus:
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This equation shows that the differences between the local value of ~D and its average value
~Dave = ε0

~E, and between the local value of ~B and its average value ~Bave = µ0
~H act as

sources for ~D.
Now let all quantities have the oscillating form e¡iωt . The equation (7) becomes
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where
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and v = c/
p

µ0ε0 is the wave speed in the medium. We can use the Green’s function for the

wave equation to obtain an expression for ~D :
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Of course this is not really a solution yet, because ~D appears on the right hand side as well.

Now we expect the solution to be a radiation field of the form
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where, from equation 8, the scattering amplitude is:
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(We have made the usual approximations in evaluating
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”integration by parts” trick. The integral is of the form:Z
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Then we can do it again to get:
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Thus the expression for ~A is
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(Jackson and I differ by a sign here.)
In this expression we can recognize the electric dipole moment (pg 4 of your multipole

notes)
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The differential cross section for scattering into polarization "̂ is:
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Now to get an explicit solution we must approximate. We write
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and similarly for ~B. Then
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where we can use the unperturbed field on the right hand side since it is multiplied by the
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where
~q = k (n̂0 ¡ r̂)

If the wavelength λ À the scale of the fluctuations δε and δµ, then ei~q¢~x ¼ 1, and we
have dipole radiation.

You will need equation (9) in problem 10.20.
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