Multipole fields
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1 Introduction

The big idea is to time- transform all physical quantities, such as the current vector and
the fields. We have
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The wave equation for A is:
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and we already have the solution

NS TR

~ ~7
c 47r|xfx

which we may write in terms of the time transform of J
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Now we do the integration over ¢’ :
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The Oth component is:
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Transforming the relations between the fields and the potentials, we get:
B(X,w)=V x A (Xw)



and
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We have 3 relevant length scales: d, the dimension of the source, A, the wavelength, and
r, the distance from source to observer. The ordering of these lengths determines how we
proceed.

e d < 7 < A. This is the near, or static region. With r < A, the exponential in
equations(3) and (2) is exp(2mir/A) =~ 1 and we get the static results from Chapter 3 for
the time transform A (X, w) . Thus we get the static fields, but oscillating in time.

e d < r ~ A Theinduction zone. This is tricky.

e d < X\ < r. The radiation zone. In this zone the source appears almost point-like. We
may expand the quantity |x — X'| :

and similarly
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Remember that we need more accuracy in the exponential than in the quantity outside
the exponential. From here on we shall assume we are in the radiation zone.

2 The dipole fields

We put the approximations for |5& — 5&’| into the expression for A (equation 3):
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Thus the time transform of A is:
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where k = w/c. Now we expand the exponential in the integrand:
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The first term in A is:
ikr

Ay(Fw) = [ TE, w) %
cr
We can simplify this expression by using the equation of charge conservation:
dp
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Taking the time transform, we have:
—iwp+V - J (Xw) =0
Now
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since J is zero outside the source. Thus:
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where p is the dipole moment of the source.

Then:
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and in the radiation zone k > 1/r, so:
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and then

3 Power radiated

The power radiated per unit solid angle is given by the Poynting vector:
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The the total energy radiated is
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and using Parseval’s theorem we may convert to an integral of the transforms over frequency:
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is the energy radiated per unit solid anéule and%er unit frequency.

4 Periodic source

If the source is periodic, then the current must be expanded in a Fourier series rather than
a Fourier transform. We have

Z J (X) exp (inwot)
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where wy is the fundamental frequency = 27 /T and T is the period of the source. Then the



expression for A becomes:
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which is a Fourier series for A with coeff|0|ents:
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Following the analysis above, we flnd the dipole term to be:
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where k,, = nwq/c and
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with p,, being the nth coefficient in the Fourier series for p. Then we find the power radiated
is:
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Now we time average by integrating over one period 7" and dividing by 7. Then only those
terms with m = —n survive the integration. We have:

dP
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This equation is very similar to equation (5), but the meaning is somewhat different.
Equation (5) is the energy radiated per unit frequency — the power spectrum. On the other
hand equation (6) gives the time averaged power in the nth harmonic for a periodic source.
Note however, that the real physical frequency w,, is described by both the negative and the
positive frequency +w,,,and for a real dipole p} = p_,,,50

dPn C 4 ~ 2
< —>= —k, |T X 7
In this expression p,, is the coefficient of the exponential Fourier series. Careful use of these
expressions obviates any of the factor-of-2 problems which otherwise arise.

Example: Suppose we have a pure frequency dipole: p = p, cos (wot) =



% (eiwot + efiwot) . Thus p; = P_1 = Po/2. Then
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Now we time average to get:
dP c
< el >= 216—7r
which agrees with Jackson’s equation 9.22.
Alternatively, we can use equation (7) directly. We get:
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as expected.

5 Quadrupole fields

The second term in the expansion of A is:
~ ikr ~ i
Ro= T [T®.0) (-iki %) d'%
To evaluate this term, first we work on the inetgrand. Note that
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Thus we can write
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The antisymmetric part of this expression is
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where M is the magnetization (cf Jackson equation 5.53). Thus:
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where




is the magnetic dipole term and
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A, =ik /2%{3 (%) +% (¢:3)}a%

r

is the quadrupole term.

Analysis of the magnetic dipole term proceeds exactly as for the electric dipole term,
with p replaced by m x #. The extra cross product with # changes the directions of E and
B, i.e. the polarization of these fields differs from that of the electric dipole terms.
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and the power is given by equation (4) or (6) with p replaced by m.

Now we proceed with the quadrupole term. We are supposed to do an integration by
parts, so let’s run through the usual steps. First note that:
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Now define the vector @ (&) by
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where @);; is the quadrupole tensor
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Then

and thus ~
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or, for a periodic source, the time averaged power is
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where again @,, is the coefficient in the exponential Fourier series.

6 Angular distribution

For the dipole:

dP
— o |f x pI* = p?sin? 0

where @ is the angle between and the direction of propagation 7.



Dipole radiation pattern

The total power radiated is:

dP, ¢ i
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For the quadrupole,
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which can be quite complicated.

Suppose a charge q oscillates along the z—axis from z = 0 to z = a,with period 7. The
dipole moment is:

Dz = 29 = qg (14 coswt) = q% (2 4 et 4 e—iwt)

and the quadrupole moments are
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The dipole power radiated is
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For the quadrupole, we first evaluate the vector Q (T)
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This vector has components at both w and 2w.
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while at the second harmonic:
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The distribution given in equation (9) is shown below:

The total power radiated at w is the sum of the dipole and quadrupole terms:

dP1 B q2a2w4 w6q2 CL4
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The total power radiated in the quadrupole is:
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The angle integrals give:

0 if lorp=1,2andl#p
/rlrpéQ: %71' if lorp=1,2andl=p = —0j
2r2 if I=p=3
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while for
7

we note that if any of the indices [, p, 7,

TpTTmd$

m = 1 or 2, then one more of them must also equal

that same index to survive the integration over ¢. We need the results

/0 " cos ¢pdo
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/ sin? ¢ cos? ¢do
0

/0277 sin ¢dg = 0

27
/ sin? ¢pdo = 7
0

27
= / sin® pdp = 0
0
27 3
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Each of the components of #* also contains either sin 6 or cosé, and since we need an even
number of sing and cos ¢ terms, we never have an odd power of sind,so we need:
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These couple as follows:
W%ﬁ if 2ofindices = 1,2and 2 indices = 3
v dQ) — 271'% if all indices =3
plyimaae = %}— if 2indices =1 and 2 indices = 2
sr 8 jf allindices =1 or 2.
Thus we may write:
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But ;5 is traceless, so the last term is zero, so
6
wy 3 N
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Let’s recalculate the power radiated by our oscillating charge. The quadrupole term at 2w

gives
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Now compare with the integral of our previous term (9)
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while at the fundamental
.2 2 4
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51207 51207 15 240 0 1 ¢
and the total power formula gives:
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These expressions agree.
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