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1 Introduction

The big idea is to time- transform all physical quantities, such as the current vector and
the fields. We have

 (x̃) =
1√
2
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−∞
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The wave equation forA is:
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J

and we already have the solution
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which we may write in terms of the time transform of J
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Now we do the integration over 0 :
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The 0th component is:

Φ (x) =
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2
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−∞
−

 (x̃0 ) exp
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while the 1,2,3 components are:
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1√
2
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−∞
−

J̃ (x̃0 ) exp
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¯̄
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¯̄
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Transforming the relations between the fields and the potentials, we get:

B̃ (x̃ )= ∇̃× Ã (x̃)

1



and
1



Ẽ


= ∇̃× B̃→ − 


Ẽ (x̃) = ∇̃× B̃ (x̃)

and thus

Ẽ (x̃) =



∇̃× B̃ (x̃)

We have 3 relevant length scales:  the dimension of the source,  the wavelength, and
 the distance from source to observer. The ordering of these lengths determines how we
proceed.

•  ¿  ¿  This is the near, or static region. With  ¿  the exponential in
equations(3) and (2) is exp(2) ≈ 1 and we get the static results from Chapter 3 for
the time transform Ã (x̃ )  Thus we get the static fields, but oscillating in time.

• ¿  ∼  The induction zone. This is tricky.

•  ¿  ¿  The radiation zone. In this zone the source appears almost point-like. We
may expand the quantity

¯̄
x̃− x̃0

¯̄
:¯̄

x̃− x̃0
¯̄2

= 2 + 02 − 2r̃ · x̃0¯̄
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0



¶
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and similarly
1¯̄

x̃− x̃0
¯̄ = 1


+ r̂ · x̃0 + · · · ≈ 1



Remember that we need more accuracy in the exponential than in the quantity outside
the exponential. From here on we shall assume we are in the radiation zone.

2 The dipole fields

We put the approximations for
¯̄
x̃− x̃0

¯̄
into the expression for Ã (equation 3):
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3x̃0

Thus the time transform of Ã is:

Ã (x̃) =




Z
J̃ (x̃0 ) exp

¡−r̂ · x̃0¢ 3x̃0
where  =  Now we expand the exponential in the integrand:

exp
¡−r̂ · x̃0¢ = 1− r̂ · x̃0 + 1

2
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¡
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The first term in Ã is:

Ã (x̃) =




Z
J̃ (x̃0 ) 3x̃0

We can simplify this expression by using the equation of charge conservation:




+ ∇̃ · J̃ =0

Taking the time transform, we have:
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and Z
all space
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∞
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since J is zero outside the source. Thus:Z
J̃ (x̃0 ) 3x̃0 = −

Z
x̃0
³
∇̃0·J̃

´
3x̃0

= −
Z
x̃0 (x̃0 ) 3x̃0 = −p̃ ()

where p̃ is the dipole moment of the source.
Then:

Ã (x̃) = − 



p̃ () = − 




p̃ ()

B̃ = ∇̃× Ã = − 


µ
 − 1



¶
 r̂× p̃

and in the radiation zone  À 1 so:

B̃ =2



r̂× p̃
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and then

Ẽ (x̃) =



∇̃× B̃ (x̃) = 
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¶
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= −2 
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3 Power radiated

The power radiated per unit solid angle is given by the Poynting vector:
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¯̄̄
The the total energy radiated is
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and using Parseval’s theorem we may convert to an integral of the transforms over frequency:
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where

2
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r̂× (r̂× p̃)

¶
×
µ
2

−


r̂× p̃∗
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4
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and so
2

Ω
=



4
4 |̂r× p̃|2 (5)

is the energy radiated per unit solid angle and per unit frequency.

4 Periodic source

If the source is periodic, then the current must be expanded in a Fourier series rather than
a Fourier transform. We have

J (x̃) =

+∞X
=−∞

J (x̃) exp (0)

where 0 is the fundamental frequency = 2 and  is the period of the source. Then the
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expression for Ã becomes:

A (x) =
1



Z +∞X
=−∞

J (x̃
0) exp (00)
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which is a Fourier series forA with coefficients:
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+∞X
=−∞

Z
J (x̃)


¯̄
x̃− x̃0

¯̄ exp ¡−0 ¯̄x̃− x̃0¯̄ ¢ 3x̃0
Following the analysis above, we find the dipole term to be:

Ã (x̃) = −0 
−


p̃ = −0 

−


p̃

where  = 0 and

p̃ =

Z
x̃0 (x̃

0) 3x̃0

with  being the th coefficient in the Fourier series for  Then we find the power radiated
is:


Ω
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4
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¯̄̄
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!
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2
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!¯̄̄̄
¯
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4

+∞X
=−∞
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2
2
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Now we time average by integrating over one period  and dividing by  Then only those
terms with  = − survive the integration. We have:




Ω
=



4

+∞X
=−∞

4 |̂r× p̃|2 (6)

This equation is very similar to equation (5), but the meaning is somewhat different.
Equation (5) is the energy radiated per unit frequency – the power spectrum. On the other
hand equation (6) gives the time averaged power in the th harmonic for a periodic source.
Note however, that the real physical frequency  is described by both the negative and the
positive frequency ±and for a real dipole p̃∗ = p̃−so




Ω
=



2
4 |̂r× p̃|2 (7)

In this expression p̄ is the coefficient of the exponential Fourier series. Careful use of these
expressions obviates any of the factor-of-2 problems which otherwise arise.

Example: Suppose we have a pure frequency dipole: p̃ = p̃0 cos (0) =

5



p̃0
2

¡
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¢
 Thus p̃1 = p̃−1 = p̃02 Then

Ã =− 0
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2
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¢
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Ω
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4
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4
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1

2
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¢¶×µ20 12 r̂× p̃0 ¡0 − −0−0
¢¶¯̄̄̄

=
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4
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2− 2(0)2 − −2(0)−2
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Now we time average to get:




Ω
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16
40 |̂r× p̃0|2 =



8
40 |̂r× p̃0|2

which agrees with Jackson’s equation 9.22.
Alternatively, we can use equation (7) directly. We get:




Ω
=



2
4 |̂r× p̃|2 =



2

³0


´4 ¯̄̂̄̄
r× p̃0

2

¯̄̄̄2
=



8

³0


´4
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as expected.

5 Quadrupole fields

The second term in the expansion of Ã is:

Ã2 =




Z
J̃ (x̃0 )

¡−r̂ · x̃0¢ 3x̃0
To evaluate this term, first we work on the inetgrand. Note that³

x̃0 × J̃
´
× r̂ = J̃ ¡r̂ · x̃0¢− x̃0 ³r̂ · J̃´

Thus we can write
1


J̃
¡
r̂ · x̃0¢ = 1

2

n
J̃
¡
r̂ · x̃0¢+ x̃0 ³r̂ · J̃´+ ³x̃0 × J̃´× r̂o

The antisymmetric part of this expression is
1

2

³
x̃0 × J̃

´
× r̂ = M̃× r̂

where M̃ is the magnetization (cf Jackson equation 5.53). Thus:

Ã2 = − 




µZ
1

2

n
J̃
¡
r̂ · x̃0¢+ x̃0 ³r̂ · J̃´o 3x̃0 + m̃× r̂

¶
= Ã + Ã

where

Ã = − 



m̃× r̂
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is the magnetic dipole term and

Ã = − 




Z
1

2

n
J̃
¡
r̂ · x̃0¢+ x̃0 ³r̂ · J̃´o 3x̃0

is the quadrupole term.
Analysis of the magnetic dipole term proceeds exactly as for the electric dipole term,

with p̃ replaced by m̃× r̂ The extra cross product with r̂ changes the directions of Ẽ and
B̃ i.e. the polarization of these fields differs from that of the electric dipole terms.

B̃ = 2



r̂× (m̃× r̂) = 2




(m̃− r̂ (m̃ · r̂))

while

Ẽ = −2 



(r̂× m̃)

and the power is given by equation (4) or (6) with p̃ replaced by m̃

Now we proceed with the quadrupole term. We are supposed to do an integration by
parts, so let’s run through the usual steps. First note that:

 ( (r̂ · x̃)) =  (r̂ · x̃) +  (r̂ · x̃) ∇̃ · J̃+
³
r̂ · ∇̃

´
x̃

=  (r̂ · x̃) +  (r̂ · x̃) ∇̃ · J̃+J̃ · r̂
So Z

 [ (r̂ · x̃)]  =

Z


( (r̂ · x̃))  = 0

=

Z ³
 (r̂ · x̃) +  (r̂ · x̃) ∇̃ · J̃+J̃ · r̂

´


Then:

 = − 




Z
1

2

n
 (r̂ · 0) + 0

³
r̂ · 

´o
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2

Z
 (r̂ · )

³
∇ · 

´


= 


2

Z
 (r̂ · ) 

= −2 


2

Z
 (r̂ · ) 

Then
 = ∇×  = − 

3

2


Z
(r̂× ) (r̂ · ) 

Now define the vector  (r̂) by

 =
X


 ̂ (8)

where  is the quadrupole tensor

 =

Z ³
3 − |x̃|2 

´
 (x̃) 3x̃
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Then

 =
X


Z ³
3 ̂ − |x̃|2 ̂

´
 (x̃) 3x̃

 =

Z
3x̃ (r̂ · x̃)  − r̂

Z
|x̃|2 

and thus

 = − 
3

2


r̂× 

3
and then

 =




⎛⎝4

2


r̂×
³
r̂× 

´
3

⎞⎠
=

3

6
 r̂×

³
r̂× 

´
and thus

2

Ω
=



4

6

36

¯̄̂̄
r× 

¯̄̄2
=



144
6
¯̄̂̄
r× 

¯̄̄2
or, for a periodic source, the time averaged power is




Ω
=



72
6
¯̄̂̄
r× 

¯̄̄2
where again  is the coefficient in the exponential Fourier series.

6 Angular distribution

For the dipole:


Ω
∝ |̂r× |2 = 2 sin2 

where  is the angle between  and the direction of propagation r̂.
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Dipole radiation pattern

The total power radiated is:

 =

Z


Ω
Ω =



2
4

2
 (2)

Z +1

−1

¡
1− 2

¢


=
4

3
4

2


For the quadrupole,


Ω
∝
¯̄̂̄
r×  (r̂)

¯̄̄2
which can be quite complicated.

Suppose a charge  oscillates along the −axis from  = 0 to  = with period  The
dipole moment is:

 =  = 


2
(1 + cos) = 



4

¡
2 +  + −

¢
and the quadrupole moments are

11 = 22 = −2 = − 
2

4
(1 + cos)

2

= − 
2

4

¡
1 + 2 cos+ cos2 

¢
= − 

2

4

µ
1 + 2 cos+

cos 2+ 1

2

¶
= − 

2

4

µ
3

2
+  + − +

2 + −2

4

¶
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33 = 2
2 = 

2

2

µ
3

2
+  + − +

2 + −2

4

¶
The dipole power radiated is



Ω
=



2
4

2


and is all at the fundamental  = 2

 We have 1 = 4so

1

Ω
=



2

³


´4 ³
4

´2
sin2  =

224

323
sin2 

For the quadrupole, we first evaluate the vector  (r̂)

 =
X




Thus

1 = 11 sin  cos = − 
2

4

µ
3

2
+  + − +

2 + −2

4

¶
sin  cos

2 = 22 sin  sin = − 
2

4

µ
3

2
+  + − +

2 + −2

4

¶
sin  sin

and

3 = 33 cos  = 
2

2

µ
3

2
+  + − +

2 + −2

4

¶
cos 

Then

r̂×  = (sin  cos sin  sin cos )× (sin  cos sin  sin−2 cos )11
= (3 sin  cos  sin−3 cos  sin  cos 0)  

2

4

µ
3

2
+  + − +

2 + −2

4

¶
=

µ
3

2
sin 2 sin−3

2
sin 2 cos 0

¶

2

4

µ
3

2
+  + − +

2 + −2

4

¶
This vector has components at both  and 2

1

Ω
=



72
6
¯̄̂̄
r× 1 (r̂)

¯̄̄2
=



72
6
µ

2

4

¶2µ
9

4
sin2 2

¶
=

624

5125
sin2 2

while at the second harmonic:

2

Ω
=



72
6
µ

2

16

¶2µ
9

4
sin2 2

¶
=



72

µ
2



¶6µ

2

16

¶2µ
9

4
sin2 2

¶
=

624

1285
sin2 2 (9)
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The distribution given in equation (9) is shown below:
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The total power radiated at  is the sum of the dipole and quadrupole terms:

1

Ω
=

224

323
sin2  +

624

20485
sin2 2

=
224

20483

µ
64 sin2  +

22

2
sin2 2

¶
The total power radiated in the quadrupole is:

1 =

Z


Ω
Ω =



72
6
Z ¯̄̂̄
r×  (r̂)

¯̄̄2
Ω

where ³
r̂×  (r̂)

´

= 

and thus ¯̄̂̄
r×  (r̂)

¯̄̄2
= 

∗


= ( − ) 
∗


= 
∗
 − 

∗


= 
¡


∗
 − 

∗


¢
=  · ∗ −

¯̄̂̄
r · 

¯̄̄2
The angle integrals give:Z

Ω =

⎧⎨⎩ 0 if  or  = 1 2 and  6= 
4
3
 if  or  = 1 2 and  = 

2 2
3

if  =  = 3

=
4

3
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while for Z
Ω

we note that if any of the indices    = 1 or 2, then one more of them must also equal
that same index to survive the integration over  We need the resultsZ 2

0

cos =

Z 2

0

sin = 0Z 2

0

cos2  =

Z 2

0

sin2  = Z 2

0

cos3  =

Z 2

0

sin3  = 0Z 2

0

cos4  =

Z 2

0

sin4  =
3

4
Z 2

0

sin2  cos2  =


4

Each of the components of r̂ also contains either sin  or cos and since we need an even
number of sin and cos terms, we never have an odd power of sinso we need:Z +1

−1
4 =

2

5Z +1

−1
2
¡
1− 2

¢
 =

3

3
− 5

5

¯̄̄̄+1
−1
=
4

15Z +1

−1

¡
1− 2

¢2
 =

16

15

These couple as follows:

Z
Ω =

⎧⎪⎪⎨⎪⎪⎩
 4
15

if 2 of indices = 1 2 and 2 indices = 3
2 2

5
if all indices =3


4
16
15

if 2 indices = 1 and 2 indices = 2
3
4
16
15

if all indices = 1 or 2.

Thus we may write:Z
Ω =

4

15
( +  + )

So we have

   =


72
6
Z


¡


∗
 − 

∗


¢
Ω

=


72
6
∙


∗


4

3
 −

∗


4

15
( +  + )

¸
=



72
6
4

3

∙


∗
 −


∗


5
− 

∗


5
− 

∗


5

¸
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But  is traceless, so the last term is zero, so

   =
6
545

3

5


∗


=
6
905

X


||2 (10)

Let’s recalculate the power radiated by our oscillating charge. The quadrupole term at 2
gives

 2  =
(2)

6

905

µ

2

16

¶2
[1 + 1 + 4]

=
1

60

6

5
24

Now compare with the integral of our previous term (9)

 2  =

Z
624

1285
sin2 2Ω

=
624

1285
(2)

Z +1

−1
4
¡
1− 2

¢
2

=
624

1285
(2) (4)

4

15

=
1

60

6

5
24

while at the fundamental

 1  =

Z
624

5125
sin2 2Ω =

624

5125

32

15
=

1

240

6

5
24

and the total power formula gives:

 1  =
6

905

µ

2

4

¶2
(1 + 1 + 4) =

1

240

6

5
24

These expressions agree.
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