Multipole fields

S.M.Lea

1 Introduction

The big idea is to time- transform all physical quantities, such as the current vector and the fields. We have

$$
J^{\mu}(\tilde{\mathbf{x}}, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} J^{\mu}(\tilde{\mathbf{x}}, \omega) \exp (-i \omega t) d t
$$

The wave equation for \mathbf{A} is:

$$
\square^{2} \mathbf{A}=\frac{4 \pi}{c} \mathbf{J}
$$

and we already have the solution

$$
\mathbf{A}=\frac{4 \pi}{c} \int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \frac{\delta\left(\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|-c\left(t-t^{\prime}\right)\right)}{4 \pi\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d^{4} \mathbf{x}^{\prime}
$$

which we may write in terms of the time transform of \mathbf{J}

$$
A^{\mu}(\mathbf{x})=\frac{1}{c} \int \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} J^{\mu}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) e^{-i \omega t^{\prime}} d \omega \frac{\delta\left(\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|-c\left(t-t^{\prime}\right)\right)}{\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d^{4} \mathbf{x}^{\prime}
$$

Now we do the integration over t^{\prime} :

$$
\begin{align*}
A^{\mu}(\mathbf{x}) & =\frac{1}{c} \int \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} J^{\mu}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) e^{-i \omega t^{\prime}} d \omega \frac{\delta\left(c t^{\prime}-c\left(t-\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| / c\right)\right)}{\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d c t^{\prime} d^{3} \tilde{\mathbf{x}}^{\prime} \\
& =\frac{1}{\sqrt{2 \pi}} \iint_{-\infty}^{+\infty} \frac{J^{\mu}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) \exp \left(-i \omega\left(t-\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| / c\right)\right)}{c\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d \omega d^{3} \tilde{\mathbf{x}}^{\prime} \tag{1}
\end{align*}
$$

The 0th component is:

$$
\begin{equation*}
\Phi(\mathbf{x})=\frac{1}{\sqrt{2 \pi}} \iint_{-\infty}^{+\infty} d \omega e^{-i \omega t} \frac{\rho\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) \exp \left(i \omega\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| / c\right)}{\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d^{3} \tilde{\mathbf{x}}^{\prime} \tag{2}
\end{equation*}
$$

while the $1,2,3$ components are:

$$
\begin{equation*}
\tilde{\mathbf{A}}=\frac{1}{\sqrt{2 \pi}} \iint_{-\infty}^{+\infty} d \omega e^{-i \omega t} \frac{\tilde{\mathbf{J}}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) \exp \left(i \omega\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| / c\right)}{c\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d^{3} \tilde{\mathbf{x}}^{\prime} \tag{3}
\end{equation*}
$$

Transforming the relations between the fields and the potentials, we get:

$$
\tilde{\mathbf{B}}(\tilde{\mathbf{x}}, \omega)=\tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{A}}(\tilde{\mathbf{x}}, \omega)
$$

and

$$
\frac{1}{c} \frac{\partial \tilde{\mathbf{E}}}{\partial t}=\tilde{\nabla} \times \tilde{\mathbf{B}} \rightarrow-\frac{i \omega}{c} \tilde{\mathbf{E}}(\tilde{\mathbf{x}}, \omega)=\tilde{\nabla} \times \tilde{\mathbf{B}}(\tilde{\mathbf{x}}, \omega)
$$

and thus

$$
\tilde{\mathbf{E}}(\tilde{\mathbf{x}}, \omega)=\frac{i c}{\omega} \tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{B}}(\tilde{\mathbf{x}}, \omega)
$$

We have 3 relevant length scales: d, the dimension of the source, λ, the wavelength, and r, the distance from source to observer. The ordering of these lengths determines how we proceed.

- $d \ll r \ll \lambda$. This is the near, or static region. With $r \ll \lambda$, the exponential in equations(3) and (2) is $\exp (2 \pi i r / \lambda) \approx 1$ and we get the static results from Chapter 3 for the time transform $\tilde{\mathbf{A}}(\tilde{\mathbf{x}}, \omega)$. Thus we get the static fields, but oscillating in time.
- $d \ll r \sim \lambda$. The induction zone. This is tricky.
- $d \ll \lambda \ll r$. The radiation zone. In this zone the source appears almost point-like. We may expand the quantity $\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|$:

$$
\begin{aligned}
\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|^{2} & =r^{2}+x^{\prime 2}-2 \tilde{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime} \\
\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| & =r\left(1-\frac{\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}}{r}\right)=r-\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}
\end{aligned}
$$

and similarly

$$
\frac{1}{\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|}=\frac{1}{r}+\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}+\cdots \approx \frac{1}{r}
$$

Remember that we need more accuracy in the exponential than in the quantity outside the exponential. From here on we shall assume we are in the radiation zone.

2 The dipole fields

We put the approximations for $\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|$ into the expression for $\tilde{\mathbf{A}}$ (equation 3):

$$
\tilde{\mathbf{A}}=\frac{1}{\sqrt{2 \pi}} \iint_{-\infty}^{+\infty} d \omega e^{-i \omega t} \frac{\tilde{\mathbf{J}}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) \exp \left(i k r-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)}{c r} d^{3} \tilde{\mathbf{x}}^{\prime}
$$

Thus the time transform of $\tilde{\mathbf{A}}$ is:

$$
\tilde{\mathbf{A}}(\tilde{\mathbf{x}}, \omega)=\frac{e^{i k r}}{c r} \int \tilde{\mathbf{J}}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) \exp \left(-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right) d^{3} \tilde{\mathbf{x}}^{\prime}
$$

where $k=\omega / c$. Now we expand the exponential in the integrand:

$$
\begin{aligned}
\exp \left(-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right) & =1-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}+\frac{1}{2}\left(-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)^{2}+\cdots \\
& =1-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}-\frac{k^{2}}{2}\left(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)^{2}+\cdots
\end{aligned}
$$

The first term in $\tilde{\mathbf{A}}$ is:

$$
\tilde{\mathbf{A}}_{d}(\tilde{\mathbf{x}}, \omega)=\frac{e^{i k r}}{c r} \int \tilde{\mathbf{J}}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) d^{3} \tilde{\mathbf{x}}^{\prime}
$$

We can simplify this expression by using the equation of charge conservation:

$$
\frac{\partial \rho}{\partial t}+\tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}}=0
$$

Taking the time transform, we have:

$$
-i \omega \rho+\tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}}(\tilde{\mathbf{x}}, \omega)=0
$$

Now

$$
\begin{align*}
\tilde{\nabla}(\tilde{\mathbf{x}} \cdot \tilde{\mathbf{J}}) & =(\tilde{\mathbf{x}} \cdot \tilde{\boldsymbol{\nabla}}) \tilde{\mathbf{J}}+(\tilde{\mathbf{J}} \cdot \tilde{\boldsymbol{\nabla}}) \tilde{\mathbf{x}}+\tilde{\mathbf{x}} \times(\tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{J}})+\tilde{\mathbf{J}} \times(\tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{x}}) \\
& =(\tilde{\mathbf{x}} \cdot \tilde{\nabla}) \tilde{\mathbf{J}}+\tilde{\mathbf{J}}+\tilde{\mathbf{x}} \times(\tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{J}}) \\
& =x_{m} \partial_{m} J_{i}+J_{i}+\varepsilon_{i j k} x_{j} \varepsilon_{k l m} \partial_{l} J_{m} \\
& =x_{m} \partial_{m} J_{i}+J_{i}+\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) x_{j} \partial_{l} J_{m} \\
& =x_{m} \partial_{m} J_{i}+J_{i}+x_{j} \partial_{i} J_{j}-x_{l} \partial_{l} J_{i} \\
& =J_{i}+x_{j} \partial_{i} J_{j}+x_{i} \partial_{m} J_{m}-x_{i} \partial_{m} J_{m} \\
& =\tilde{\mathbf{J}}+\tilde{\mathbf{x}}(\tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}})+x_{j} \partial_{i} J_{j}-x_{i} \partial_{m} J_{m} \\
& =\tilde{\mathbf{J}}+\tilde{\mathbf{x}}(\tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}})+(\tilde{\mathbf{x}} \times \tilde{\boldsymbol{\nabla}}) \times \tilde{\mathbf{J}} \tag{4}
\end{align*}
$$

and

$$
\begin{aligned}
\int_{\text {all space }} \tilde{\boldsymbol{\nabla}}(\tilde{\mathbf{x}} \cdot \tilde{\mathbf{J}}) d V & =\int_{s_{\infty}}(\tilde{\mathbf{x}} \cdot \tilde{\mathbf{J}}) \hat{\mathbf{n}} d A=0 \\
& =\int_{\text {all space }}(\tilde{\mathbf{J}}+\tilde{\mathbf{x}}(\tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}})+(\tilde{\mathbf{x}} \times \tilde{\boldsymbol{\nabla}}) \times \tilde{\mathbf{J}}) d V
\end{aligned}
$$

since \mathbf{J} is zero outside the source. Thus:

$$
\begin{aligned}
\int \tilde{\mathbf{J}}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) d^{3} \tilde{\mathbf{x}}^{\prime} & =-\int \tilde{\mathbf{x}}^{\prime}\left(\tilde{\boldsymbol{\nabla}}^{\prime} \cdot \tilde{\mathbf{J}}\right) d^{3} \tilde{\mathbf{x}}^{\prime} \\
& =-i \int \tilde{\mathbf{x}}^{\prime} \omega \rho\left(\tilde{\mathbf{x}}^{\prime}, \omega\right) d^{3} \tilde{\mathbf{x}}^{\prime}=-i \omega \tilde{\mathbf{p}}(\omega)
\end{aligned}
$$

where $\tilde{\mathbf{p}}$ is the dipole moment of the source.
Then:

$$
\begin{gathered}
\tilde{\mathbf{A}}_{d}(\tilde{\mathbf{x}}, \omega)=-i \omega \frac{e^{i k r}}{c r} \tilde{\mathbf{p}}(\omega)=-i k \frac{e^{i k r}}{r} \tilde{\mathbf{p}}(\omega) \\
\tilde{\mathbf{B}}=\tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{A}}=-\frac{i k}{r}\left(i k-\frac{1}{r}\right) e^{i k r} \hat{\mathbf{r}} \times \tilde{\mathbf{p}}
\end{gathered}
$$

and in the radiation zone $k \gg 1 / r$, so:

$$
\tilde{\mathbf{B}}=k^{2} \frac{e^{i k r}}{r} \hat{\mathbf{r}} \times \tilde{\mathbf{p}}
$$

and then

$$
\begin{aligned}
\tilde{\mathbf{E}}(\tilde{\mathbf{x}}, \omega) & =\frac{i}{k} \tilde{\boldsymbol{\nabla}} \times \tilde{\mathbf{B}}(\tilde{\mathbf{x}}, \omega)=\frac{i}{k} \tilde{\boldsymbol{\nabla}} \times\left(k^{2} \frac{e^{i k r}}{r} \hat{\mathbf{r}} \times \tilde{\mathbf{p}}\right) \\
& =i k\left(i k \frac{e^{i k r}}{r}\right) \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \tilde{\mathbf{p}}) \\
& =-k^{2} \frac{e^{i k r}}{r} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \tilde{\mathbf{p}})
\end{aligned}
$$

3 Power radiated

The power radiated per unit solid angle is given by the Poynting vector:

$$
\frac{d P}{d \Omega}=r^{2}|\tilde{\mathbf{S}}|=r^{2} \frac{c}{4 \pi}|\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}|
$$

The the total energy radiated is

$$
\frac{d W}{d \Omega}=\frac{c}{4 \pi} \int_{-\infty}^{+\infty} r^{2}|\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}| d t
$$

and using Parseval's theorem we may convert to an integral of the transforms over frequency:

$$
\frac{d W}{d \Omega}=\frac{c}{4 \pi} \int_{-\infty}^{+\infty} r^{2}\left|\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}^{*}\right| d \omega
$$

where

$$
\begin{aligned}
r^{2}\left|\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}^{*}\right| & =r^{2} \frac{c}{4 \pi} \left\lvert\,\left(-k^{2} \frac{e^{i k r}}{r} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \tilde{\mathbf{p}})\right) \times\left(k^{2} \frac{\left.{\frac{e^{-i k r}}{r}}_{\hat{\mathbf{r}}} \times \tilde{\mathbf{p}}^{*}\right) \mid}{}\right.\right. \\
& =\frac{c}{4 \pi} k^{4}|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}|^{2}
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{d^{2} W}{d \Omega d \omega}=\frac{c}{4 \pi} k^{4}|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}|^{2} \tag{5}
\end{equation*}
$$

is the energy radiated per unit solid angle and per unit frequency.

4 Periodic source

If the source is periodic, then the current must be expanded in a Fourier series rather than a Fourier transform. We have

$$
\mathbf{J}(\tilde{\mathbf{x}}, t)=\sum_{n=-\infty}^{+\infty} \mathbf{J}_{n}(\tilde{\mathbf{x}}) \exp \left(i n \omega_{0} t\right)
$$

where ω_{0} is the fundamental frequency $=2 \pi / T$ and T is the period of the source. Then the
expression for $\tilde{\mathbf{A}}$ becomes:

$$
\begin{aligned}
\mathbf{A}(\mathbf{x}) & =\frac{1}{c} \int \sum_{n=-\infty}^{+\infty} \mathbf{J}_{n}\left(\tilde{\mathbf{x}}^{\prime}\right) \exp \left(i n \omega_{0} t^{\prime}\right) \frac{\delta\left(\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|-c\left(t-t^{\prime}\right)\right)}{\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} d^{4} \mathbf{x}^{\prime} \\
& =\sum_{n=-\infty}^{+\infty} \int \frac{\mathbf{J}_{n}(\tilde{\mathbf{x}}) \exp \left(i n \omega_{0} t\right)}{c\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} \exp \left(-i n \omega_{0}\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| / c\right) d^{3} \tilde{\mathbf{x}}^{\prime}
\end{aligned}
$$

which is a Fourier series for \mathbf{A} with coefficients:

$$
\mathbf{A}_{n}=\sum_{n=-\infty}^{+\infty} \int \frac{\mathbf{J}_{n}(\tilde{\mathbf{x}})}{c\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right|} \exp \left(-i n \omega_{0}\left|\tilde{\mathbf{x}}-\tilde{\mathbf{x}}^{\prime}\right| / c\right) d^{3} \tilde{\mathbf{x}}^{\prime}
$$

Following the analysis above, we find the dipole term to be:

$$
\tilde{\mathbf{A}}_{n, d}(\tilde{\mathbf{x}})=-i n \omega_{0} \frac{e^{-i k_{n} r}}{c r} \tilde{\mathbf{p}}_{n}=-i n k_{0} \frac{e^{-i k_{n} r}}{r} \tilde{\mathbf{p}}_{n}
$$

where $k_{n}=n \omega_{0} / c$ and

$$
\tilde{\mathbf{p}}_{n}=\int \tilde{\mathbf{x}}^{\prime} \rho_{n}\left(\tilde{\mathbf{x}}^{\prime}\right) d^{3} \tilde{\mathbf{x}}^{\prime}
$$

with ρ_{n} being the nth coefficient in the Fourier series for ρ. Then we find the power radiated is:

$$
\begin{aligned}
\frac{d P}{d \Omega} & =r^{2} \frac{c}{4 \pi}|\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}| \\
& =r^{2} \frac{c}{4 \pi}\left|\left(\sum_{n=-\infty}^{+\infty}-k_{n}^{2} \frac{e^{-i k_{n} r}}{r} \hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{n}\right) e^{i n \omega_{o} t}\right) \times\left(\sum_{m=-\infty}^{+\infty} k_{m}^{2} \frac{e^{i k_{m} r}}{r} \hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{m} e^{i m \omega_{0} t}\right)\right| \\
& =\frac{c}{4 \pi} \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} k_{n}^{2} k_{m}^{2} e^{-i k_{n} r} e^{-i k_{m} r}\left|-\left(\hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{n}\right)\right) \times\left(\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{m}\right)\right| \exp \left(i \omega_{0} t(n+m)\right)
\end{aligned}
$$

Now we time average by integrating over one period T and dividing by T. Then only those terms with $m=-n$ survive the integration. We have:

$$
\begin{equation*}
<\frac{d P}{d \Omega}>=\frac{c}{4 \pi} \sum_{n=-\infty}^{+\infty} k_{n}^{4}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{n}\right|^{2} \tag{6}
\end{equation*}
$$

This equation is very similar to equation (5), but the meaning is somewhat different. Equation (5) is the energy radiated per unit frequency - the power spectrum. On the other hand equation (6) gives the time averaged power in the nth harmonic for a periodic source. Note however, that the real physical frequency ω_{n} is described by both the negative and the positive frequency $\pm \omega_{n}$, and for a real dipole $\tilde{\mathbf{p}}_{n}^{*}=\tilde{\mathbf{p}}_{-n}$, so

$$
\begin{equation*}
<\frac{d P_{n}}{d \Omega}>=\frac{c}{2 \pi} k_{n}^{4}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{n}\right|^{2} \tag{7}
\end{equation*}
$$

In this expression $\overline{\mathbf{p}}_{n}$ is the coefficient of the exponential Fourier series. Careful use of these expressions obviates any of the factor-of-2 problems which otherwise arise.

Example: Suppose we have a pure frequency dipole: $\tilde{\mathbf{p}}=\tilde{\mathbf{p}}_{0} \cos \left(\omega_{0} t\right)=$
$\frac{\tilde{\mathbf{p}}_{0}}{2}\left(e^{i \omega_{0} t}+e^{-i \omega_{0} t}\right)$. Thus $\tilde{\mathbf{p}}_{1}=\tilde{\mathbf{p}}_{-1}=\tilde{\mathbf{p}}_{0} / 2$. Then

$$
\tilde{\mathbf{A}}=-i n k_{0} \frac{1}{2 r} \tilde{\mathbf{p}}_{0}\left(e^{i k_{0} r} e^{i \omega_{0} t}-e^{-i k_{0} r} e^{-i \omega_{0} t}\right)
$$

and

$$
\begin{aligned}
\frac{d P}{d \Omega} & =r^{2} \frac{c}{4 \pi}|\tilde{\mathbf{E}} \times \tilde{\mathbf{B}}| \\
& =r^{2} \frac{c}{4 \pi}\left|\left(-k_{0}^{2} \frac{1}{2 r} \hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{0}\right)\left(e^{i k_{0} r} e^{i \omega_{o} t}-e^{-i k_{0} r-i \omega_{0} t}\right)\right) \times\left(k_{0}^{2} \frac{1}{2 r} \hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{0}\left(e^{i k_{0} r} e^{i \omega_{o} t}-e^{-i k_{0} r-i \omega_{0} t}\right)\right)\right| \\
& =\frac{k_{0}^{4}}{4} \frac{c}{4 \pi}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{0}\right|^{2}\left|2-e^{2\left(i k_{0} r\right)} e^{i 2 \omega_{o} t}-e^{-2\left(i k_{0} r\right)} e^{-i 2 \omega_{o} t}\right|
\end{aligned}
$$

Now we time average to get:

$$
<\frac{d P}{d \Omega}>=2 \frac{c}{16 \pi} k_{0}^{4}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{0}\right|^{2}=\frac{c}{8 \pi} k_{0}^{4}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{0}\right|^{2}
$$

which agrees with Jackson's equation 9.22.
Alternatively, we can use equation (7) directly. We get:

$$
<\frac{d P_{n}}{d \Omega}>=\frac{c}{2 \pi} k_{n}^{4}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{n}\right|^{2}=\frac{c}{2 \pi}\left(\frac{\omega_{0}}{c}\right)^{4}\left|\hat{\mathbf{r}} \times \frac{\tilde{\mathbf{p}}_{0}}{2}\right|^{2}=\frac{c}{8 \pi}\left(\frac{\omega_{0}}{c}\right)^{4}\left|\hat{\mathbf{r}} \times \tilde{\mathbf{p}}_{0}\right|^{2}
$$

as expected.

5 Quadrupole fields

The second term in the expansion of $\tilde{\mathbf{A}}$ is:

$$
\tilde{\mathbf{A}}_{2}=\frac{e^{i k r}}{c r} \int \tilde{\mathbf{J}}\left(\tilde{\mathbf{x}}^{\prime}, \omega\right)\left(-i k \hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right) d^{3} \tilde{\mathbf{x}}^{\prime}
$$

To evaluate this term, first we work on the inetgrand. Note that

$$
\left(\tilde{\mathbf{x}}^{\prime} \times \tilde{\mathbf{J}}\right) \times \hat{\mathbf{r}}=\tilde{\mathbf{J}}\left(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)-\tilde{\mathbf{x}}^{\prime}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{J}})
$$

Thus we can write

$$
\frac{1}{c} \tilde{\mathbf{J}}\left(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)=\frac{1}{2 c}\left\{\tilde{\mathbf{J}}\left(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)+\tilde{\mathbf{x}}^{\prime}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{J}})+\left(\tilde{\mathbf{x}}^{\prime} \times \tilde{\mathbf{J}}\right) \times \hat{\mathbf{r}}\right\}
$$

The antisymmetric part of this expression is

$$
\frac{1}{2 c}\left(\tilde{\mathbf{x}}^{\prime} \times \tilde{\mathbf{J}}\right) \times \hat{\mathbf{r}}=\tilde{\mathbf{M}} \times \hat{\mathbf{r}}
$$

where $\tilde{\mathrm{M}}$ is the magnetization (cf Jackson equation 5.53). Thus:

$$
\begin{aligned}
\tilde{\mathbf{A}}_{2} & =-i k \frac{e^{i k r}}{r}\left(\int \frac{1}{2 c}\left\{\tilde{\mathbf{J}}\left(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)+\tilde{\mathbf{x}}^{\prime}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{J}})\right\} d^{3} \tilde{\mathbf{x}}^{\prime}+\tilde{\mathbf{m}} \times \hat{\mathbf{r}}\right) \\
& =\tilde{\mathbf{A}}_{q}+\tilde{\mathbf{A}}_{m d}
\end{aligned}
$$

where

$$
\tilde{\mathbf{A}}_{m d}=-i k \frac{e^{i k r}}{r} \tilde{\mathbf{m}} \times \hat{\mathbf{r}}
$$

is the magnetic dipole term and

$$
\tilde{\mathbf{A}}_{q}=-i k \frac{e^{i k r}}{r} \int \frac{1}{2 c}\left\{\tilde{\mathbf{J}}\left(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}^{\prime}\right)+\tilde{\mathbf{x}}^{\prime}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{J}})\right\} d^{3} \tilde{\mathbf{x}}^{\prime}
$$

is the quadrupole term.
Analysis of the magnetic dipole term proceeds exactly as for the electric dipole term, with $\tilde{\mathbf{p}}$ replaced by $\tilde{\mathbf{m}} \times \hat{\mathbf{r}}$. The extra cross product with $\hat{\mathbf{r}}$ changes the directions of $\tilde{\mathbf{E}}$ and $\tilde{\mathbf{B}}$, i.e. the polarization of these fields differs from that of the electric dipole terms.

$$
\tilde{\mathbf{B}}_{m d}=k^{2} \frac{e^{i k r}}{r} \hat{\mathbf{r}} \times(\tilde{\mathbf{m}} \times \hat{\mathbf{r}})=k^{2} \frac{e^{i k r}}{r}(\tilde{\mathbf{m}}-\hat{\mathbf{r}}(\tilde{\mathbf{m}} \cdot \hat{\mathbf{r}}))
$$

while

$$
\tilde{\mathbf{E}}_{m d}=-k^{2} \frac{e^{i k r}}{r}(\hat{\mathbf{r}} \times \tilde{\mathbf{m}})
$$

and the power is given by equation (4) or (6) with $\tilde{\mathbf{p}}$ replaced by $\tilde{\mathbf{m}}$.
Now we proceed with the quadrupole term. We are supposed to do an integration by parts, so let's run through the usual steps. First note that:

$$
\begin{aligned}
\partial_{i}\left(x_{k} J_{i}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}})\right) & =\delta_{i k} J_{i}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}})+x_{k}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}) \tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}}+x_{k} J_{i}(\hat{\mathbf{r}} \cdot \tilde{\nabla}) \tilde{\mathbf{x}} \\
& =J_{k}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}})+x_{k}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}) \tilde{\boldsymbol{\nabla}} \cdot \tilde{\mathbf{J}}+x_{k} \tilde{\mathbf{J}} \cdot \hat{\mathbf{r}}
\end{aligned}
$$

So

$$
\begin{aligned}
\int \partial_{i}\left[x_{k} J_{i}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}})\right] d V & =\int_{S}\left(x_{k} J_{i}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}})\right) d A_{i}=0 \\
& =\int\left(J_{k}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}})+x_{k}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}) \tilde{\nabla} \cdot \tilde{\mathbf{J}}+x_{k} \tilde{\mathbf{J}} \cdot \hat{\mathbf{r}}\right) d V
\end{aligned}
$$

Then:

$$
\begin{aligned}
\vec{A}_{q} & =-i k \frac{e^{i k r}}{r} \int \frac{1}{2 c}\left\{\vec{J}\left(\hat{\mathbf{r}} \cdot \vec{x}^{\prime}\right)+\vec{x}^{\prime}(\hat{\mathbf{r}} \cdot \vec{J})\right\} d^{3} \vec{x}^{\prime} \\
& =i k \frac{e^{i k r}}{2 c r} \int \vec{x}(\hat{\mathbf{r}} \cdot \vec{x})(\vec{\nabla} \cdot \vec{J}) d V \\
& =i k \frac{e^{i k r}}{2 c r} \int \vec{x}(\hat{\mathbf{r}} \cdot \vec{x}) i \omega \rho d V \\
& =-k^{2} \frac{e^{i k r}}{2 r} \int \vec{x}(\hat{\mathbf{r}} \cdot \vec{x}) \rho d V
\end{aligned}
$$

Then

$$
\vec{B}=\nabla \times \vec{A}=-\frac{i k^{3}}{2 r} e^{i k r} \int(\hat{\mathbf{r}} \times \vec{x})(\hat{\mathbf{r}} \cdot \vec{x}) \rho d V
$$

Now define the vector $\vec{Q}(\hat{\mathbf{r}})$ by

$$
\begin{equation*}
Q_{i}=\sum_{j} Q_{i j} \hat{r}_{j} \tag{8}
\end{equation*}
$$

where $Q_{i j}$ is the quadrupole tensor

$$
Q_{i j}=\int\left(3 x_{i} x_{j}-|\tilde{\mathbf{x}}|^{2} \delta_{i j}\right) \rho(\tilde{\mathbf{x}}) d^{3} \tilde{\mathbf{x}}
$$

Then

$$
\begin{aligned}
Q_{i} & =\sum_{j} \int\left(3 x_{i} x_{j} \hat{r}_{j}-|\tilde{\mathbf{x}}|^{2} \hat{r}_{i}\right) \rho(\tilde{\mathbf{x}}) d^{3} \tilde{\mathbf{x}} \\
\vec{Q} & =\int 3 \tilde{\mathbf{x}}(\hat{\mathbf{r}} \cdot \tilde{\mathbf{x}}) \rho d V-\hat{\mathbf{r}} \int|\tilde{\mathbf{x}}|^{2} \rho d V
\end{aligned}
$$

and thus

$$
\vec{B}=-\frac{i k^{3}}{2 r} e^{i k r} \frac{\hat{\mathbf{r}} \times \vec{Q}}{3}
$$

and then

$$
\begin{aligned}
\vec{E} & =\frac{i}{k}\left(\frac{k^{4}}{2 r} e^{i k r} \frac{\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \vec{Q})}{3}\right) \\
& =\frac{i k^{3}}{6 r} e^{i k r} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \vec{Q})
\end{aligned}
$$

and thus

$$
\begin{aligned}
\frac{d^{2} W}{d \Omega d \omega} & =\frac{c}{4 \pi} \frac{k^{6}}{36}|\hat{\mathbf{r}} \times \vec{Q}|^{2} \\
& =\frac{c}{144 \pi} k^{6}|\hat{\mathbf{r}} \times \vec{Q}|^{2}
\end{aligned}
$$

or, for a periodic source, the time averaged power is

$$
<\frac{d P_{n}}{d \Omega}>=\frac{c}{72 \pi} k^{6}\left|\hat{\mathbf{r}} \times \vec{Q}_{n}\right|^{2}
$$

where again Q_{n} is the coefficient in the exponential Fourier series.

6 Angular distribution

For the dipole:

$$
\frac{d P}{d \Omega} \propto|\hat{\mathbf{r}} \times \vec{p}|^{2}=p^{2} \sin ^{2} \theta
$$

where θ is the angle between \vec{p} and the direction of propagation $\hat{\mathbf{r}}$.

Dipole radiation pattern
The total power radiated is:

$$
\begin{aligned}
P_{n} & =\int \frac{d P_{n}}{d \Omega} d \Omega=\frac{c}{2 \pi} k_{n}^{4} p_{n}^{2}(2 \pi) \int_{-1}^{+1}\left(1-\mu^{2}\right) d \mu \\
& =\frac{4}{3} c k_{n}^{4} p_{n}^{2}
\end{aligned}
$$

For the quadrupole,
which can be quite complicated.
Suppose a charge q oscillates along the z-axis from $z=0$ to $z=a$, with period T. The dipole moment is:

$$
p_{z}=z q=q \frac{a}{2}(1+\cos \omega t)=q \frac{a}{4}\left(2+e^{i \omega t}+e^{-i \omega t}\right)
$$

and the quadrupole moments are

$$
\begin{aligned}
Q_{11} & =Q_{22}=-z^{2} q=-q \frac{a^{2}}{4}(1+\cos \omega t)^{2} \\
& =-q \frac{a^{2}}{4}\left(1+2 \cos \omega t+\cos ^{2} \omega t\right) \\
& =-q \frac{a^{2}}{4}\left(1+2 \cos \omega t+\frac{\cos 2 \omega t+1}{2}\right) \\
& =-q \frac{a^{2}}{4}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right)
\end{aligned}
$$

$$
Q_{33}=2 z^{2} q=q \frac{a^{2}}{2}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right)
$$

The dipole power radiated is

$$
\frac{d P_{n}}{d \Omega}=\frac{c}{2 \pi} k_{n}^{4} p_{n}^{2}
$$

and is all at the fundamental $\omega=\frac{2 \pi}{T}$. We have $p_{1}=q a / 4$,so

$$
\frac{d P_{1}}{d \Omega}=\frac{c}{2 \pi}\left(\frac{\omega}{c}\right)^{4}\left(\frac{q a}{4}\right)^{2} \sin ^{2} \theta=\frac{q^{2} a^{2} \omega^{4}}{32 \pi c^{3}} \sin ^{2} \theta
$$

For the quadrupole, we first evaluate the vector $\vec{Q}(\hat{\mathbf{r}})$

$$
Q_{i}=\sum_{j} Q_{i j} r_{j}
$$

Thus

$$
\begin{aligned}
Q_{1} & =Q_{11} \sin \theta \cos \phi=-q \frac{a^{2}}{4}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right) \sin \theta \cos \phi \\
Q_{2} & =Q_{22} \sin \theta \sin \phi=-q \frac{a^{2}}{4}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right) \sin \theta \sin \phi
\end{aligned}
$$

and

$$
Q_{3}=Q_{33} \cos \theta=q \frac{a^{2}}{2}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right) \cos \theta
$$

Then

$$
\begin{aligned}
\hat{\mathbf{r}} \times \vec{Q} & =(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \times(\sin \theta \cos \phi, \sin \theta \sin \phi,-2 \cos \theta) Q_{11} \\
& =(3 \sin \theta \cos \theta \sin \phi,-3 \cos \theta \sin \theta \cos \phi, 0) q \frac{a^{2}}{4}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right) \\
& =\left(\frac{3}{2} \sin 2 \theta \sin \phi,-\frac{3}{2} \sin 2 \theta \cos \phi, 0\right) q \frac{a^{2}}{4}\left(\frac{3}{2}+e^{i \omega t}+e^{-i \omega t}+\frac{e^{i 2 \omega t}+e^{-i 2 \omega t}}{4}\right)
\end{aligned}
$$

This vector has components at both ω and 2ω.

$$
\begin{aligned}
\frac{d P_{1}}{d \Omega} & =\frac{c}{72 \pi} k^{6}\left|\hat{\mathbf{r}} \times \vec{Q}_{1}(\hat{\mathbf{r}})\right|^{2} \\
& =\frac{c}{72 \pi} k^{6}\left(q \frac{a^{2}}{4}\right)^{2}\left(\frac{9}{4} \sin ^{2} 2 \theta\right) \\
& =\frac{\omega^{6} q^{2} a^{4}}{512 c^{5} \pi} \sin ^{2} 2 \theta
\end{aligned}
$$

while at the second harmonic:

$$
\begin{align*}
\frac{d P_{2}}{d \Omega} & =\frac{c}{72 \pi} k^{6}\left(q \frac{a^{2}}{16}\right)^{2}\left(\frac{9}{4} \sin ^{2} 2 \theta\right) \\
& =\frac{c}{72 \pi}\left(\frac{2 \omega}{c}\right)^{6}\left(q \frac{a^{2}}{16}\right)^{2}\left(\frac{9}{4} \sin ^{2} 2 \theta\right) \\
& =\frac{\omega^{6} q^{2} a^{4}}{128 c^{5} \pi} \sin ^{2} 2 \theta \tag{9}
\end{align*}
$$

The distribution given in equation (9) is shown below:

The total power radiated at ω is the sum of the dipole and quadrupole terms:

$$
\begin{aligned}
\frac{d P_{1}}{d \Omega} & =\frac{q^{2} a^{2} \omega^{4}}{32 \pi c^{3}} \sin ^{2} \theta+\frac{\omega^{6} q^{2} a^{4}}{2048 \pi c^{5}} \sin ^{2} 2 \theta \\
& =\frac{q^{2} a^{2} \omega^{4}}{2048 c^{3} \pi}\left(64 \sin ^{2} \theta+\frac{\omega^{2} a^{2}}{c^{2}} \sin ^{2} 2 \theta\right)
\end{aligned}
$$

The total power radiated in the quadrupole is:

$$
P_{1}=\int \frac{d P}{d \Omega} d \Omega=\frac{c}{72 \pi} k^{6} \int\left|\hat{\mathbf{r}} \times \vec{Q}_{n}(\hat{\mathbf{r}})\right|^{2} d \Omega
$$

where

$$
\left(\hat{\mathbf{r}} \times \vec{Q}_{n}(\hat{\mathbf{r}})\right)_{i}=\varepsilon_{i j k} r_{j} Q_{k l} r_{l}
$$

and thus

$$
\begin{aligned}
\left|\hat{\mathbf{r}} \times \vec{Q}_{n}(\hat{\mathbf{r}})\right|^{2} & =\varepsilon_{i j k} r_{j} Q_{k l} r_{l} \varepsilon_{i m n} r_{m} Q_{n p}^{*} r_{p} \\
& =\left(\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}\right) r_{j} Q_{k l} r_{l} r_{m} Q_{n p}^{*} r_{p} \\
& =r_{m} r_{m} Q_{k l} Q_{k p}^{*} r_{l} r_{p}-r_{j} r_{p} Q_{m l} Q_{j p}^{*} r_{l} r_{m} \\
& =r_{l} r_{p}\left(Q_{k l} Q_{k p}^{*}-r_{j} r_{m} Q_{m l} Q_{j p}^{*}\right) \\
& =\vec{Q} \cdot \vec{Q}^{*}-|\hat{\mathbf{r}} \cdot \vec{Q}|^{2}
\end{aligned}
$$

The angle integrals give:

$$
\int r_{l} r_{p} \delta \Omega=\left\{\begin{array}{ll}
0 & \text { if } \quad l \text { or } p=1,2 \text { and } l \neq p \\
\frac{4}{3} \pi & \text { if } \quad l \text { or } p=1,2 \text { and } l=p \\
2 \pi \frac{2}{3} & \text { if } \quad l=p=3
\end{array}=\frac{4 \pi}{3} \delta_{l p}\right.
$$

while for

$$
\int r_{l} r_{p} r_{j} r_{m} d \Omega
$$

we note that if any of the indices $l, p, j, m=1$ or 2 , then one more of them must also equal that same index to survive the integration over ϕ. We need the results

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos \phi d \phi & =\int_{0}^{2 \pi} \sin \phi d \phi=0 \\
\int_{0}^{2 \pi} \cos ^{2} \phi d \phi & =\int_{0}^{2 \pi} \sin ^{2} \phi d \phi=\pi \\
\int_{0}^{2 \pi} \cos ^{3} \phi d \phi & =\int_{0}^{2 \pi} \sin ^{3} \phi d \phi=0 \\
\int_{0}^{2 \pi} \cos ^{4} \phi d \phi & =\int_{0}^{2 \pi} \sin ^{4} \phi d \phi=\frac{3}{4} \pi \\
\int_{0}^{2 \pi} \sin ^{2} \phi \cos ^{2} \phi d \phi & =\frac{\pi}{4}
\end{aligned}
$$

Each of the components of $\hat{\mathbf{r}}$ also contains either $\sin \theta$ or $\cos \theta$, and since we need an even number of $\sin \phi$ and $\cos \phi$ terms, we never have an odd power of $\sin \theta$, so we need:

$$
\begin{aligned}
\int_{-1}^{+1} \mu^{4} d \mu & =\frac{2}{5} \\
\int_{-1}^{+1} \mu^{2}\left(1-\mu^{2}\right) d \mu & =\frac{\mu^{3}}{3}-\left.\frac{\mu^{5}}{5}\right|_{-1} ^{+1}=\frac{4}{15} \\
\int_{-1}^{+1}\left(1-\mu^{2}\right)^{2} d \mu & =\frac{16}{15}
\end{aligned}
$$

These couple as follows:

$$
\int r_{l} r_{p} r_{j} r_{m} d \Omega=\left\{\begin{array}{lll}
\pi \frac{4}{15} & \text { if } 2 \text { of indices }=1,2 \text { and } 2 \text { indices }=3 \\
2 \pi \frac{2}{5} & \text { if } & \text { all indices }=3 \\
\frac{\pi}{4} \frac{16}{15} & \text { if } 2 \text { indices }=1 \text { and } 2 \text { indices }=2 \\
\frac{3 \pi}{4} \frac{16}{15} & \text { if } & \text { all indices }=1 \text { or } 2
\end{array}\right.
$$

Thus we may write:

$$
\int r_{l} r_{p} r_{j} r_{m} d \Omega=\frac{4 \pi}{15}\left(\delta_{l p} \delta_{j m}+\delta_{l j} \delta_{p m}+\delta_{l m} \delta_{j p}\right)
$$

So we have

$$
\begin{aligned}
& <P_{n}>=\frac{c}{72 \pi} k^{6} \int r_{l} r_{p}\left(Q_{k l} Q_{k p}^{*}-r_{j} r_{m} Q_{m l} Q_{j p}^{*}\right) d \Omega \\
& =\frac{c}{72 \pi} k^{6}\left[Q_{k l} Q_{k p}^{*} \frac{4 \pi}{3} \delta_{l p}-Q_{m l} Q_{j p}^{*} \frac{4 \pi}{15}\left(\delta_{l p} \delta_{j m}+\delta_{l j} \delta_{p m}+\delta_{l m} \delta_{j p}\right)\right] \\
& =\frac{c}{72 \pi} k^{6} \frac{4 \pi}{3}\left[Q_{k p} Q_{k p}^{*}-\frac{Q_{m p} Q_{m p}^{*}}{5}-\frac{Q_{m j} Q_{j m}^{*}}{5}-\frac{Q_{m m} Q_{p p}^{*}}{5}\right]
\end{aligned}
$$

But $Q_{i j}$ is traceless, so the last term is zero, so

$$
\begin{align*}
& <P_{n}>=\frac{\omega_{n}^{6}}{54 c^{5}} \frac{3}{5} Q_{k p} Q_{k p}^{*} \\
& =\frac{\omega_{n}^{6}}{90 c^{5}} \sum_{k, p}\left|Q_{k p}\right|^{2} \tag{10}
\end{align*}
$$

Let's recalculate the power radiated by our oscillating charge. The quadrupole term at 2ω gives

$$
\begin{aligned}
& <P_{2}>=\frac{(2 \omega)^{6}}{90 c^{5}}\left(q \frac{a^{2}}{16}\right)^{2}[1+1+4] \\
& =\frac{1}{60} \frac{\omega^{6}}{c^{5}} q^{2} a^{4}
\end{aligned}
$$

Now compare with the integral of our previous term (9)

$$
\begin{aligned}
& <P_{2}>=\int \frac{\omega^{6} q^{2} a^{4}}{128 c^{5} \pi} \sin ^{2} 2 \theta d \Omega \\
& =\frac{\omega^{6} q^{2} a^{4}}{128 c^{5} \pi}(2 \pi) \int_{-1}^{+1} 4\left(1-\mu^{2}\right) \mu^{2} d \mu \\
& =\frac{\omega^{6} q^{2} a^{4}}{128 c^{5} \pi}(2 \pi)(4) \frac{4}{15} \\
& =\frac{1}{60} \frac{\omega^{6}}{c^{5}} q^{2} a^{4}
\end{aligned}
$$

while at the fundamental

$$
<P_{1}>=\int \frac{\omega^{6} q^{2} a^{4}}{512 c^{5} \pi} \sin ^{2} 2 \theta d \Omega=\frac{\omega^{6} q^{2} a^{4}}{512 c^{5} \pi} \frac{32 \pi}{15}=\frac{1}{240} \frac{\omega^{6}}{c^{5}} q^{2} a^{4}
$$

and the total power formula gives:

$$
<P_{1}>=\frac{\omega^{6}}{90 c^{5}}\left(q \frac{a^{2}}{4}\right)^{2}(1+1+4)=\frac{1}{240} \frac{\omega^{6}}{c^{5}} q^{2} a^{4}
$$

These expressions agree.

