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1 The magnetic moment tensor

Our goal here is to develop a set of moments to describe the magnetic field due to steady
currents as we did for the electric field in sphermult notes and J Ch 4. Because there are
no magnetic monopoles, the dominant contribution to Bata great distance from a current
distribution is a dipole, so we start by looking at the dipole moment. For a planar loop, 71
is defined to be (see Lea and Burke Ch 29):

m:IAﬁzgffde (1)

where the current in the loop flows counter-clockwise around 7 according to the right hand
rule. (See figure below.)

(Note: the cross product gives the area of the parallelogram formed by Z and dl: but we
need the area of the triangle, or half the area of the parallelogram. The cross product also
conveniently gives a direction normal to the area element. )

Cross products are pseudo-vectors, so we often prefer to use an antisymmetric tensor to
describe such quantities. The magnetic moment tensor is defined by:

M;; = Ij{ x; dz;j 2
loop
for a current loop, or more generally,

if the current density is not confined to wire loops. Each component of M in equation 2
represents the area of the projection of the loop onto the ¢ — j plane. Thus it should be
related to the magnetic moment vector (1). Thus we consider the vector dual to M;;, defined



by (see Lea Optional topic A eqn A.7):
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Then ) ) )
my = §€p7»31%$7-d$3 = 5]%5p7‘s$7-d$3 = 5]% (.’f X df)
P
in agreement with equation (1), showing that the magnetic moment vector is dual to the

tensor M;; .
The dual relation has an inverse (Lea eqn A.8):
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EjkpMp = Ejk:pingsMrs = 5 (5j7’6ks - (5j55k7‘) M,
1
= 5 (M — M)

But M;; is antisymmetric:

Mij = I%l’idl’j I{xil’j|§ — jéxjdxl} = O*Mji

EjkpMp = M ) ®)
Alternative proof of antisymmetry for general, localized, current density .J.
First note that

Thus:

Ok (:L‘iijk) = 6ik-$ij- + 5jk$z'Jk + xixjéka.
dp
= iji+$iJj *I’ixjg

where we used the charge conservation relation in the last step. In a steady state the last term
is zero. Then

/ Ok (xiz;Jy) AV = / zixjJyng dA =0
V SOO
/ (xjJi +a;J;) dV = 0
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since J = 0 on the surface at infinity, and so

/I’jJi dv = */l’iJj dVv
|4 14

Mj;, = —M; (6)



2 Magnetic field due to a current loop

Here we will find the multipole expansion of the magnetic field due to a current loop.
We start with the vector potential (Notes 1 eqn.21). As we did in the electric case, we use
a Taylor series expansion of 1/R (multipole moment notes section 2) to get
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where the tensor ¢ has components (sphermult notes eqn 5)

0 0 1 0 T — T
Wi = oxox -], 07 \|[z—a
g J Z'=0 |1‘. - | 7' =0
(521 + 3CL‘fL‘J (7)
#° 1
We may integrate term by term because the Taylor series converges uniformly. Then,
moving the functions of unprimed coordinates out of the integrals, we get
Ho qjk Ko Tj
A = EI<O+| P jéxder ; xjx%dxi) 47r|“|j =M + - -
Ho Zj
A= et ®)
where we used the dual inverse (5) in the last step. The leading term is the dipole:
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(Compare with "magloop" notes eqn 5.) The next term in the expansion is the quadrupole:
A quad = %IQL; jéx;x;cdx; = gqjijm‘

where

Mjk;i :I%TL‘ CL‘k d(L‘ (10)
is a rank three tensor. This tensor is not easily expressed in terms of the vector 7. It does
have some symmetry:

M1 = My
(More on this below.) Compare with the quadrupole term in eqn (9) of the "sphermult”
notes.
We can get B from A. The leading (dipole) term is:

G x A x (ﬂ‘om”"):_@ex(mxeé)
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But 7 is a constant vector, so all its derivatives are zero, and temporarily putting the z—axis

B



along 7, we get
= 1 - 1
Bt (mvrl 9% )

47 |zl oz |7
Now we get the last term from "sphermult" notes eqn 22:
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which is Jackson’s eqn. 5.64. As with the electric dipole, there is a delta-function at the
origin, but in the magnetic case it is parallel to (not opposite) 7.

The direction and magnitude of the delta-function term may be understood by looking at
a tiny current loop model for the magnetic dipole. The magnetic field at the center of a loop
of radius a is (magloop notes eqn 7)

_ I .
B = Hog

Ira? 2 m

Fograd™ = 3MUra3/3)
As a — 0, the magnetic dipole density — 71 (&) and we get
- 2
B— 3 Lomd (Z)
as in (11). Note that the electric dipole field delta function term (multipole notes eqn 20)

differs from this result by a factor of 2 as well as the sign. See J pg 190 for applications of
this to the energy of the hyperfine states of atomic systems.

3 Force and torque

31 Force
The force exerted on a steady current distribution J by an external magnetic field Eext is:
F= / J % Bex dV
As we did in the electric case, we expand the external field in a Taylor series:
F, = / €ijkdj Bexer >

0B ext,k

1 0?Bexi i
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We may use the time-independent Maxwell’s equations to rewrite the first term:

ij Bex 0 = =4
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since BB due to J is proportional to 1/73, as proved above. (For a current loop we have the
more obvious result f I dzj =0.) Notice here that B (due to J) and By are distinct fields.
Thus the first non-zero term in the force (12) is the second term:

7] Bext, k
Fi = /Eiijjl’n Tn
algext, k
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We may express this result in terms of the magnetic moment vector using (5):
8Bext, k
oz,

dx
0

= €ijkMn,

F, = cirenjpmyp
0
aBext,k
oz,
algext,k‘
oy oLk
0 8xk

= (6“151@1) - 51;)5]@71) mp

- m algext, k
= P
8:(:1»

But V - Bey = 0, and we can bring the components 7y, through the differential operator
because they are constants. We also need the fact that V X Bey = 0. Then

0

0

F=vV (m : B’m> . (13)
This is the first non-zero term in a Taylor expansion of F'. Note the relation between this
expression for F' and the energy U = —m - Bey of a dipole in an external field.
F=-VU

as expected. (Note the discussion in J §5.16, pg 214, however, which shows the limitations
of this interpretation.)

The next term is

:5,,1% Tz xd3x:5,,l%
,next ijk 2 8xm8xn o jtmLn ijk 2 8xm8xn

Compare with the electric field result in Jackson Problem 4.5.

F, i M, mnj
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32 Torque

The torque exerted on a current distribution by the external field is

P o= /fxdﬁ:/fx(fxém) B
/V@QQJ%@QM%



Using the same expansion as before, and dropping the subscript "ext" on B = By for
clarity, we have:

0By,
axm 0

0DB;

—B; (0)xpJx — T —| apJr+ - } A3z
8$7n 0
Let’s look at the terms one at a time. The first term is
Til = /Jlkak (0) d3x = Bk (0) Mki = Bk (0) skipmp
71 = mxB(0) (14)

The third term is
/ B; (0) 2. Jy d®x = B; (0) Myp =0

since M;; is antisymmetric, and thus its trace is zero. Thus (14) is the total torque if Bis
uniform. The other two terms are higher order corrections to the basic result (14)

0B;
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7; (correction terms) =

m

0 0

They involve the third rank tensor
Mijk- = / xiZL‘ij d?’:L‘

which also appeared in the expansion of A (10). The correction terms are:
0By - 0B
0 0T

7, (correction terms) = Mok (15)
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33  Anexample

Consider a current loop made of of two rectangles: ~ One in the © — y plane with
dimensions a by b, and one in the y — z plane with dimensions b by a.  Imagine forming
this thing by bending a rectangle 2a by b through 90°. Then the magnetic moment tensor
has components:

b
Mlgzljéxdyzl/ ady = Iab
0

Mlgzlfl‘dzzo

M23:I%yd,2:[/ bdz = Iab
0
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Thus the tensor is:

1 0
M=Iab| -1 0 1
0 -10
The magnetic moment vector has components:

1 . 1
my = égljijk = 5 (M23 — M32) = Jab

1 . 1
mg = §€2jkM]k =3 (Ms1 — M) =0

1 . 1
ms3 = §€3jijk = 5 (M12 — Mgl) =TIab
corresponding to the two planar parts of the loop. (Notice we can make up the bent loop

from two planar loops stuck together along the y—axis.) Thus the magnetic field produced
by this loop, at a large distance from the loop, is (eqn 11):
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Now we introduce the external magnetic field

—

B =Bo(l+ax)i+ By(1—ay)y

(Notice that V- Eext =0and V x éext = 0.) The force on the loop in this magnetic field is
(eqn 13):

F=v (m : B’m) | = Bolab¥ (1 + ax) = Bylaba &
Notice that this result is exact since the external magnetic field has no higher order
derivatives. Check the dimensions!
The leading term in the torque is (eqn14):
7 = mxB(0)
= Bolab(z+2) x (£+9)
= Bolab(2+§— 1)



The next term involves the tensor
Mijk- = I}{xil‘jdl‘k

and the first derivatives of B. The only non-zero derivatives are 9B, /0x = By« and
0B, /0y = —Bya. The correction terms (15) are thus:

0By,
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= Boa (M2 + Ma11 + Mass)

71 (correction terms) =
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Thus the correction terms are:

b? 1
71 (correction terms) = — By« (Iab2 + I% + 0) = EBQOéICLbQ



. 9 a’b  a?b 9
T9 (correction terms) = Boa | [a”b — IT + IT = Boala®b

and
73 (correction terms) = By (0 — Iab®) = —Boalab®
Thus:

2
Again this result is exact as there are no higher derivatives of B. Check the dimensions of
the result.
If you need more terms, it is probably wise to choose a different approach.

7 = Bolab [2 (1-ab)+§ (1 +aa) -2 (1 - a_bﬂ

4 Connection between magnetic moment and angular
momentum

If a current distribution is made up of IV particles, where particle ¢ has position Z;, charge
i, mass p;, and moves with velocity 7;, then the current is due to the particles’ motion

N
J= atié (F-7)
=1

and then the magnetic moment tensor components are

N
M,, = / wpiedV =3 g / 2050 (F — ) AV

i=1
and the vector components are (eqn 4)
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where

is the angular momentum of particle ¢ about the origin. If all the particles are electrons with
mass (4., for example, then the magnetic moment is

(& - e =
m=— Li=——1L (16)
2pte ; 2fte

where L is the total angular momentum of the collection of electrons.

Relation (16) is very important, and holds even on the atomic scale. However, it needs
modification when applied to the internal angular momentum of individual particles, when
quantum mechanics plays an important role. We can take the QM effects into account by



introducing a "fudge factor" g¢.. For an electron, for example,

. e
m = _92—%8
where §'is the electron spin and g ~ 2. See Jackson page 565 for precise values of g.
See Jackson problem 6.5 for the relation between 17 and the electromagnetic field

momentum.

10



5 Finding B from the Biot-Savart Law

Alternatively, we can find the field by starting from the Biot-Savart law:

S gy, [AX (7))
B = Eff[ -7
Lo o o) 1

= 07 .

i %déxvr_q,'

Inserting the Taylor expansion of 1/ R, we get

— Ho jé ;. Z T
term2="—] pdl X — =0x — =0
An |7’ )
Thus the first non-zero term is the third:

B, = g_frlgijk j{dx;V; (l'gqlmx{m)

and
v;@ (x;qlmx;n) = 6qulm$:n + x;qlm(skm = qkml':n + x;qlk
= qumx;n

since g, (7) is symmetric. Thus the dominant term in Bis:

o ’od
B; = EI EijkQkm P ATy,
Ho
= E‘eijk‘qkmMmj
Mo 76km LT
= ik | T T35 | Mmg
|z |Z|
Then using equation (4),
EijkOkmMmj = €ijxMyj = —€ijeMjr = —2my
and using the inverse relation (5):
5ijk'Mmj = EijkEmipMp = Ejki€jpmMyp

= (5kp(51m - (5km(5ip) my
= OimMik — OkmM;
And thus:

_to <2mi 3 TRTM: — xkkaz>

= =13 =15
Am \ |2 |Z]
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or:

o]
Il

4 |7

o 1 (_m+3x<m-x>>

o 1 ST 7
= Ew(i&r(m'r)fm)

which is Jackson equation 5.56. This is a dipole field, as expected, but we do not get the
delta function this way. Thus the result is valid for r > 0.
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