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1 The magnetic moment tensor
Our goal here is to develop a set of moments to describe the magnetic field due to steady

currents as we did for the electric field in sphermult notes and J Ch 4. Because there are
no magnetic monopoles, the dominant contribution to �B at a great distance from a current
distribution is a dipole, so we start by looking at the dipole moment. For a planar loop, �m
is defined to be (see Lea and Burke Ch 29):

�m = IAn̂ =
I

2

L
�x× d�c (1)

where the current in the loop flows counter-clockwise around n̂ according to the right hand
rule. (See figure below.)

(Note: the cross product gives the area of the parallelogram formed by �x and d�c, but we
need the area of the triangle, or half the area of the parallelogram. The cross product also
conveniently gives a direction normal to the area element. )
Cross products are pseudo-vectors, so we often prefer to use an antisymmetric tensor to

describe such quantities. The magnetic moment tensor is defined by:

Mij ≡ I
L
loop
xi dxj (2)

for a current loop, or more generally,

Mij ≡
]
xiJj dV (3)

if the current density is not confined to wire loops. Each component ofM in equation 2
represents the area of the projection of the loop onto the i − j plane. Thus it should be
related to the magnetic moment vector (1). Thus we consider the vector dual toMij , defined
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by (see Lea Optional topic A eqn A.7):

mp =
1

2
εprsMrs (4)

Then
mp =

1

2
εprsI

L
xrdxs =

1

2
I

L
εprsxrdxs =

1

2
I

L �
�x× d�l

�
p

in agreement with equation (1), showing that the magnetic moment vector is dual to the
tensorMij .
The dual relation has an inverse (Lea eqn A.8):

εjkpmp = εjkp
1

2
εprsMrs =

1

2
(δjrδks − δjsδkr)Mrs

=
1

2
(Mjk −Mkj)

ButMij is antisymmetric:

Mij = I

L
xidxj = I

�
xixj |PP −

L
xjdxi

�
= 0−Mji

Thus:
εjkpmp =Mjk (5)

Alternative proof of antisymmetry for general, localized, current density �J .
First note that

∂k (xixjJk) = δikxjJk + δjkxiJk + xixj∂kJk

= xjJi + xiJj − xixj ∂ρ
∂t

where we used the charge conservation relation in the last step. In a steady state the last term
is zero. Then ]

V

∂k (xixjJk) dV =

]
S∞
xixjJknk dA = 0]

V

(xjJi + xiJj) dV = 0

since �J = 0 on the surface at infinity, and so]
V

xjJi dV = −
]
V

xiJj dV

Mji = −Mij (6)
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2 Magnetic field due to a current loop
Here we will find the multipole expansion of the magnetic field due to a current loop.
We start with the vector potential (Notes 1 eqn.21). As we did in the electric case, we use

a Taylor series expansion of 1/R (multipole moment notes section 2) to get

�A =
µ0
4π
I

]
d�x3

|�x− �x3| =
µ0
4π
I

L
d�x3

#
1

|�x| +
�x · �x3
|�x|3 +

�x3 ·↔q · �x3
2

+ · · ·
$

where the tensor↔q has components (sphermult notes eqn 5)

qij =
∂

∂x3i

∂

∂x3j

1

|�x− �x3|
����
x3=0

=
∂

∂x3i

#
xj − x3j
|�x− �x3|3

$�����
x3=0

=
−δij
|�x|3 + 3

xixj

|�x|5 (7)

We may integrate term by term because the Taylor series converges uniformly. Then,
moving the functions of unprimed coordinates out of the integrals, we get

Ai =
µ0
4π
I

#
0 +

xj

|�x|3
L
x3jdx

3
i +

qjk
2

L
x3jx
3
kdx
3
i · · ·

$
=
µ0
4π

xj

|�x|3Mji + · · ·

Ai =
µ0
4π

xj

|�x|3 εjipmp + · · · (8)

where we used the dual inverse (5) in the last step. The leading term is the dipole:

�Adipole =
µ0
4π

�m× �x

|�x|3 (9)

(Compare with "magloop" notes eqn 5.) The next term in the expansion is the quadrupole:

Ai,quad =
µ0
4π
I
qjk
2

L
x3jx
3
kdx
3
i =

µ0
8π
qjkMjki

where
Mjki = I

L
x3jx
3
k dx

3
i (10)

is a rank three tensor. This tensor is not easily expressed in terms of the vector �m. It does
have some symmetry:

Mijk =Mjik

(More on this below.) Compare with the quadrupole term in eqn (9) of the "sphermult"
notes.
We can get �B from �A. The leading (dipole) term is:

�B = �∇× �A = �∇×
#
µ0
4π

�m× �x

|�x|3
$
= −µ0

4π
�∇×

�
�m× �∇ 1

|�x|
�

= −µ0
4π

�
�m(�∇ · �∇ 1

|�x|) +
�
�∇ 1

|�x| ·
�∇
�
�m− �∇ 1

|�x|
�
�∇ · �m

�
−
�
�m · �∇

�
�∇ 1

|�x|
�

But �m is a constant vector, so all its derivatives are zero, and temporarily putting the z−axis
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along �m, we get
�B = −µ0

4π

�
�m∇2 1|�x| −m

∂

∂z
�∇ 1

|�x|
�

Now we get the last term from "sphermult" notes eqn 22:

�B = −µ0
4π

�
�m [(−4πδ (�x)] +m

�
ẑ

r3
− 3 �x

r5
ẑ · �x+ 4π

3
δ (�x) ẑ

��
=

µ0
4π

�
3
�x

r5
�m · �x− �m

r3
+
8π

3
δ (�x) �m

�
(11)

which is Jackson’s eqn. 5.64. As with the electric dipole, there is a delta-function at the
origin, but in the magnetic case it is parallel to (not opposite) �m.
The direction and magnitude of the delta-function term may be understood by looking at

a tiny current loop model for the magnetic dipole. The magnetic field at the center of a loop
of radius a is (magloop notes eqn 7)

�B = µ0
I

2a
n̂

= µ0
Iπa2

2πa3
n̂ =

2

3
µ0

�m

(4πa3/3)

As a→ 0, the magnetic dipole density→ �mδ (�x) and we get

�B → 2

3
µ0 �mδ (�x)

as in (11). Note that the electric dipole field delta function term (multipole notes eqn 20)
differs from this result by a factor of 2 as well as the sign. See J pg 190 for applications of
this to the energy of the hyperfine states of atomic systems.

3 Force and torque

3.1 Force

The force exerted on a steady current distribution �J by an external magnetic field �Bext is:

�F =

]
�J × �Bext dV

As we did in the electric case, we expand the external field in a Taylor series:

Fi =

]
εijkJjBext,k d

3x

=

]
εijkJj

�
Bext,k (0) + xn

∂Bext,k
∂xn

����
0

+
1

2
xnxp

∂2Bext,k
∂xn∂xp

����
0

· · ·
�
d3x (12)
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We may use the time-independent Maxwell’s equations to rewrite the first term:

εijkBext, k (0)

]
Jjd

3x =
εijkBext, k (0)

µ0

] �
�∇× �B

�
j
d3x

=
εijkBext, k (0)

µ0

]
S∞

�
n̂× �B

�
j
d2x = 0

since �B due to �J is proportional to 1/r3, as proved above. (For a current loop we have the
more obvious result

K
I dxj = 0.) Notice here that �B (due to �J) and �Bext are distinct fields.

Thus the first non-zero term in the force (12) is the second term:

Fi =

]
εijkJjxn

∂Bext, k
∂xn

����
0

d3x

= εijkMnj
∂Bext, k
∂xn

����
0

We may express this result in terms of the magnetic moment vector using (5):

Fi = εijkεnjpmp
∂Bext, k
∂xn

����
0

= (δinδkp − δipδkn)mp
∂Bext, k
∂xn

����
0

= mk
∂Bext, k
∂xi

����
0

−mi
∂Bext, k
∂xk

����
0

But �∇ · �Bext = 0, and we can bring the components mk through the differential operator
because they are constants. We also need the fact that �∇× �Bext = 0. Then

�F = �∇
�
�m · �Bext

����
0

(13)

This is the first non-zero term in a Taylor expansion of �F. Note the relation between this
expression for �F and the energy U = −�m · �Bext of a dipole in an external field.

�F = −�∇U
as expected. (Note the discussion in J §5.16, pg 214, however, which shows the limitations
of this interpretation.)
The next term is

Fi,next = εijk
1

2

∂2Bext,k
∂xm∂xn

����
0

]
Jjxmxnd

3x = εijk
1

2

∂2Bext,k
∂xm∂xn

����
0

Mmnj

Compare with the electric field result in Jackson Problem 4.5.

3.2 Torque

The torque exerted on a current distribution by the external field is

�τ =

]
�x× d�F =

]
�x×

�
�J × �Bext

�
d3x

=

] k
�J
�
�x · �Bext

�
− �Bext

�
�x · �J

�l
d3x
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Using the same expansion as before, and dropping the subscript "ext" on �B = �Bext for
clarity, we have:

τ i =

] �
JixkBk (0) + Jixkxm

∂Bk
∂xm

����
0

+ · · ·

−Bi (0)xkJk − xm ∂Bi
∂xm

����
0

xkJk + · · ·
�
d3x

Let’s look at the terms one at a time. The first term is

τ i,1 =

]
JixkBk (0) d

3x = Bk (0)Mki = Bk (0) εkipmp

�τ1 = �m× �B (0) (14)
The third term is ]

Bi (0)xkJk d
3x = Bi (0)Mkk = 0

sinceMij is antisymmetric, and thus its trace is zero. Thus (14) is the total torque if �B is
uniform. The other two terms are higher order corrections to the basic result (14)

τ i (correction terms) =
∂Bk
∂xm

����
0

]
xkxmJi d

3x− ∂Bi
∂xm

����
0

]
xmxkJk d

3x

They involve the third rank tensor

Mijk =

]
xixjJk d

3x

which also appeared in the expansion of �A (10). The correction terms are:

τ i (correction terms) =
∂Bk
∂xm

����
0

Mkmi − ∂Bi
∂xm

����
0

Mmkk (15)

3.3 An example

Consider a current loop made of of two rectangles: One in the x − y plane with
dimensions a by b, and one in the y − z plane with dimensions b by a. Imagine forming
this thing by bending a rectangle 2a by b through 90◦. Then the magnetic moment tensor
has components:

M12 = I

L
xdy = I

] b

0

ady = Iab

M13 = I

L
xdz = 0

M23 = I

L
ydz = I

] a

0

bdz = Iab
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Thus the tensor is:

M = Iab

 0 1 0
−1 0 1
0 −1 0


The magnetic moment vector has components:

m1 =
1

2
ε1jkMjk =

1

2
(M23 −M32) = Iab

m2 =
1

2
ε2jkMjk =

1

2
(M31 −M13) = 0

m3 =
1

2
ε3jkMjk =

1

2
(M12 −M21) = Iab

corresponding to the two planar parts of the loop. (Notice we can make up the bent loop
from two planar loops stuck together along the y−axis.) Thus the magnetic field produced
by this loop, at a large distance from the loop, is (eqn 11):

�B =
µ0
4π

1

|�x|3 (3r̂ (�m · r̂)− �m)

=
µ0
4π

Iab

|�x|3
#
3�x
x+ z

|�x|2 − x̂− ẑ
$

Now we introduce the external magnetic field
�Bext = B0 (1 + αx) x̂+B0 (1− αy) ŷ

(Notice that �∇ · �Bext = 0 and �∇× �Bext = 0.) The force on the loop in this magnetic field is
(eqn 13):

�F = �∇
�
�m · �Bext

����
0
= B0Iab�∇ (1 + αx) = B0Iabα x̂

Notice that this result is exact since the external magnetic field has no higher order
derivatives. Check the dimensions!
The leading term in the torque is (eqn14):

�τ = �m× �B (0)

= B0Iab (x̂+ ẑ)× (x̂+ ŷ)
= B0Iab (ẑ + ŷ − x̂)
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The next term involves the tensor

Mijk = I

L
xixjdxk

and the first derivatives of �B. The only non-zero derivatives are ∂Bx/∂x = B0α and
∂By/∂y = −B0α. The correction terms (15) are thus:

τ1 (correction terms) =
∂Bk
∂xm

����
0

Mkm1 − ∂B1
∂xm

����
0

Mmkk

= B0α (M111 −M221 −M111 −M122 −M133)

= −B0α (M221 +M122 +M133)

τ2 (correction terms) =
∂Bk
∂xm

����
0

Mkm2 − ∂B2
∂xm

����
0

Mmkk

= B0α (M112 −M222 +M211 +M222 +M233)

= B0α (M112 +M211 +M233)

and

τ3 (correction terms) =
∂Bk
∂xm

����
0

Mkm3 − ∂B3
∂xm

����
0

Mmkk

= B0α (M113 −M223)

Let’s find the values ofM that we need:

M112 = I

L
xxdy = I

] b

0

a2dy = Ia2b

M113 = I

L
xxdz = 0

M122 = I

L
xydy = I

] b

0

aydy = I
ab2

2

M133 = I

L
xzdz = 0

M211 = I

L
yxdx = I

] 0

a

bxdx = −I a
2b

2

M221 = I

L
yydx = I

] 0

a

b2dx = −Iab2

M223 = I

L
yydz = I

] a

0

b2dz = Iab2

M233 = I

L
yzdz = I

] a

0

bzdz = I
a2b

2

Thus the correction terms are:

τ1 (correction terms) = −B0α
�
−Iab2 + I ab

2

2
+ 0

�
=
1

2
B0αIab

2
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τ2 (correction terms) = B0α
�
Ia2b− I a

2b

2
+ I

a2b

2

�
= B0αIa

2b

and
τ3 (correction terms) = B0α

�
0− Iab2� = −B0αIab2

Thus:
�τ = B0Iab

�
ẑ (1− αb)+ŷ (1 + αa)−x̂

�
1− αb

2

��
Again this result is exact as there are no higher derivatives of �B. Check the dimensions of
the result.
If you need more terms, it is probably wise to choose a different approach.

4 Connection between magnetic moment and angular
momentum
If a current distribution is made up ofN particles, where particle i has position �xi, charge

qi, mass µi, and moves with velocity �vi, then the current is due to the particles’ motion

�j =
N[
i=1

qi�viδ (�x− �xi)

and then the magnetic moment tensor components are

Mpr =

]
xpjrdV =

N[
i=1

qi

]
xpvi,rδ (�x− �xi) dV

and the vector components are (eqn 4)

mk =
1

2
εkprMpr =

1

2

N[
i=1

qi

]
εkprxpvi,rδ (�x− �xi) dV

�m =
1

2

N[
i=1

qi�xi × �vi =
N[
i=1

qi
2µi

�Li

where
�Li = µi�xi × �vi

is the angular momentum of particle i about the origin. If all the particles are electrons with
mass µe, for example, then the magnetic moment is

�m = − e

2µe

N[
i=1

�Li = − e

2µe
�L (16)

where �L is the total angular momentum of the collection of electrons.
Relation (16) is very important, and holds even on the atomic scale. However, it needs

modification when applied to the internal angular momentum of individual particles, when
quantum mechanics plays an important role. We can take the QM effects into account by
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introducing a "fudge factor" g. . For an electron, for example,

�m = −g e

2µe
�s

where �s is the electron spin and g * 2. See Jackson page 565 for precise values of g.
See Jackson problem 6.5 for the relation between �m and the electromagnetic field

momentum.
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5 Finding B from the Biot-Savart Law
Alternatively, we can find the field by starting from the Biot-Savart law:

�B (�x) =
µ0
4π
I

L
d�c× (�x− �x3)
|�x− �x3|3

=
µ0
4π
I

L
d�c× �∇3 1

|�x− �x3|
Inserting the Taylor expansion of 1/R, we get

�B (�x) =
µ0
4π
I

L
d�c× �∇3

#
1

|�x| +
�x · �x3
|�x|3 +

�x3 · q · �x3
2

+ · · ·
$

(17)

Now �∇3 1|x| = 0, so the first term in equation 17 is zero. In the second term, �∇
3
(�x · �x3) = �x,

and
K
d�c = 0, so

term 2 =
µ0
4π
I

L
d�c× �x

|�x|3 = 0×
�x

|�x|3 = 0
Thus the first non-zero term is the third:

Bi =
µ0
8π
Iεijk

L
dx3j∇3k (x3lqlmx3m)

and
∇3k (x3lqlmx3m) = δklqlmx

3
m + x

3
lqlmδkm = qkmx

3
m + x

3
lqlk

= 2qkmx
3
m

since qlm (7) is symmetric. Thus the dominant term in �B is:

Bi =
µ0
4π
Iεijkqkm

L
dx3jx

3
m

=
µ0
4π

εijkqkmMmj

=
µ0
4π

εijk

#
−δkm
|�x|3 + 3

xkxm

|�x|5
$
Mmj

Then using equation (4),
εijkδkmMmj = εijkMkj = −εijkMjk = −2mi

and using the inverse relation (5):
εijkMmj = εijkεmjpmp = εjkiεjpmmp

= (δkpδim − δkmδip)mp

= δimmk − δkmmi

And thus:

Bi =
µ0
4π

#
2mi

|�x|3 + 3
xkximk − xkxkmi

|�x|5
$
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or:

�B =
µ0
4π

1

|�x|3
#
−�m+3�x (�m · �x)|�x|2

$
=

µ0
4π

1

|�x|3 (3r̂ (�m · r̂)− �m)

which is Jackson equation 5.56. This is a dipole field, as expected, but we do not get the
delta function this way. Thus the result is valid for r > 0.
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