
Example using spherical harmonics— Sp 2020

Magnetic field due to a current loop.
A circular loop of radius a carries current I. We place the origin at the

center of the loop, with polar axis perpendicular to the plane of the loop. Then
the current density is

�j = I
δ (r − a)

a
δ (µ) φ̂

(You can get this most easily by starting with the expression in cylindrical
coordinates

�j = Iδ (z) δ (r − a) φ̂
and using z = r cos θ. See also Lea pg 315 Example 6.7.) Then the magnetic
vector potential is (Notes 1 eqn 21)

�A (�x) =
µ0
4π

�j (�x3)
|�x− �x3|d

3�x3 (1)

=
µ0
4πa

I
δ (r3 − a) δ (µ3) φ̂ φ3

|�x− �x3| d3�x3

We must take care here, because the unit vector φ̂ is not a constant. We must
re-express it in terms of the constant Cartesian unit vectors,

φ̂ φ3 = − sinφ3x̂+ cosφ3ŷ
and thus:

�A (�x) =
µ0
4πa

I
δ (r3 − a) δ (µ3)

|�x− �x3| − sinφ3x̂+ cosφ3ŷ d3�x3
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Now we use our most useful result (J eqn 3.70, spherprobnotes eqn 25 )
to expand the 1/ |�x− �x3| in the integrand. With r< = min (r, r3) and similarly
for r>,

�A (�x) =
µ0I

4πa
δ (r3 − a) δ (µ3)

×
∞

l=0

rl<
rl+1>

l

m=−l

4π

2l+ 1
Ylm (θ,φ)Y

∗
lm θ3,φ3 − sinφ3x̂+ cosφ3ŷ d3�x3

=
µ0I

4πa

∞

l=0

l

m=−l

4π

2l + 1
Ylm (θ,φ)×

2π

0

+1

−1

∞

0

δ (r3 − a) δ (µ3) r
l
<

rl+1>

Y ∗lm θ3,φ3 − sinφ3x̂+ cosφ3ŷ (r3)2 dr3dµ3dφ3

= µ0aI
∞

l=0

l

m=−l

Ylm (θ,φ)

2l+ 1

rl<
rl+1>

2π

0

Y ∗lm
π

2
,φ3 − sinφ3x̂+ cosφ3ŷ dφ3

where we used the sifting property to evaluate the integrals over r3 and µ3. We
now interpret r< as the lesser of r and a, and similarly for r>.
To do the integral over φ3, we rewrite the sines and cosines in terms of

exponentials:

Ilm =
2π

0

Y ∗lm
π

2
,φ3 − sinφ3x̂+ cosφ3ŷ dφ3

=
2π

0

2l + 1

4π

(l −m)!
(l +m)!

Pml (0) e
−imφ eiφ

ŷ + ix̂

2
+ e−iφ

ŷ − ix̂
2

dφ3

The integral is zero unless m = ±1. (Be alert here— if you use the mantra
"axisymmetry so m = 0" you will get into big trouble!) With m = +1 we get:

Il1 =
2l + 1

4π

(l − 1)!
(l + 1)!

P 1l (0)
ŷ + ix̂

2
2π

and with m = −1 and Yl,−1 = −Y ∗l1 (spherprob notes eqn 24)
Il,−1 = −I∗l1

= −π 2l + 1

4π

(l − 1)!
(l + 1)!

P1l (0) (ŷ − ix̂)

So

�A (�x) = µ0aI
∞

l=1

π

2l + 1

rl<
rl+1>

2l + 1

4π

(l − 1)!
(l + 1)!

P 1l (0) [(ŷ + ix̂)Yl1 (θ,φ)− (ŷ − ix̂)Yl,−1]
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The sum over l starts at 1 now because with l = 0 there is no m = ±1 term.
Then

�A (�x) = µ0aI
∞

l=1

π

2l + 1

rl<
rl+1>

2l + 1

4π

(l − 1)!
(l + 1)!

P 1l (0)P
1
l (µ) (ŷ + ix̂) e

iφ + (ŷ − ix̂) e−iφ

=
µ0aI

4

∞

l=1

rl<
rl+1>

1

l (l + 1)
P1l (0)P

1
l (µ) (2ŷ cosφ− 2x̂ sinφ)

=
µ0aI

2

∞

l=1

rl<
rl+1>

P 1l (0)P
1
l (µ)

l (l + 1)
φ̂ (2)

We might have expected to find that �A is in the φ direction, parallel to �j. Check
dimensions: �A is current times µ0, which is consistent with (1).
We can simplify a bit by inserting the value of P 1l (0) . First note that Pl

is even if l is even, and odd if l is odd. Since Pml is proportional to the mth
derivative of Pl, Pml will be odd if l +m is odd and even if l +m is even. (Lea
pg 385) So Pml (0) = 0 unless l +m is even, or, in this case, l is odd. Note
that this result is due to the reflection anti-symmetry of �B about the plane of
the ring.
Now we can use the recursion relation (J3.29 or Lea 8.37)

lPl (µ) = µP 3l (µ)− P 3l−1 (µ)
lPl (0) = −P 3l−1 (0) = P 1l−1 (0) (Lea 8.53)

Thus, using Lea 8.47, with l = 2n+ 1,

P 1l (0) = (l + 1)Pl+1 (0) = (l + 1) (−1)(l+1)/2 l!!

(l + 1)!!

P 12n+1 (0) = (−1)n+1 (2n+ 1)!!
(2n)!!

(n > 0)

= (−1)n+1 (2n+ 1)!!
2nn!

Note that P 11 (µ) = − 1− µ2 = − sin θ (Lea Table 8.1), so P 11 (0) = −1.
Thus (2) becomes

�A (�x) =
µ0aI

2

sin θ

2r>
+
∞

n=1

r2n+1<

r2n+2>

1

(2n+ 1) (2n+ 2)
(−1)n+1 (2n+ 1)!!

2nn!
P 12n+1 (µ) φ̂

=
µ0aI

4r>

sin θ

r>
−
∞

n=0

r<
r>

2n+1
(2n+ 1)!!

(n+ 1) (2n+ 1)

(−1)n
2nn!

P 12n+1 (µ) φ̂ (3)

Outside the loop, r > a, and

�A (�x) =
µ0aI

4r

a

r
sin θ −

∞

n=1

(−1)n a

r

2n+1 (2n− 1)!!
2n (n+ 1)!

P 12n+1 (µ) φ̂ (4)
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For r a, n = 0 (c = 1) is the dominant term:

�A (�x) * µ0I
4

a2

r2
sin θ φ̂

so
�A (�x) * µ0a

2I

4r2
sin θ φ̂ =

µ0
4π

m

r2
sin θ φ̂ =

µ0
4π

�m× �r

r3
(5)

where �m = πa2I ẑ is the magnetic moment of the loop. Compare with Jackson
equation 5.55. Then, in this limit

�B = �∇× �A =
r̂

r sin θ

∂

∂θ

µ0
4π

m

r2
sin2 θ − θ̂

r

∂

∂r

µ0
4π

m

r
sin θ

=
r̂

r sin θ

µ0
4π

m

r2
2 sin θ cos θ +

θ̂

r

µ0
4π

m

r2
sin θ

=
µ0
4π

m

r3
r̂ 2 cos θ + θ̂ sin θ

This is a dipole field, as expected.
Inside the loop, r < a and we have:

�A (�x) =
µ0aI

4a

r

a
sin θ −

∞

n=1

(−1)n r

a

2n+1 (2n− 1)!!
2n (n+ 1)!

P 12n+1 (µ) φ̂ (6)

Near the center, r� a, the n = 0 term dominates again, and we have:

�A * µ0I
4

r

a
sin θ φ̂

and

�B (�x) * µ0
4a
I

r̂

r sin θ

∂

∂θ
r sin2 θ − θ̂

r

∂

∂r
r2 sin θ

=
µ0
2a
I r̂ cos θ − θ̂ sin θ

=
µ0
2a
I ẑ (7)

a uniform field, as expected. Compare with Lea and Burke equation 28.7 with
z = 0.
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Field on axis:
From LB 28.7, the field on the polar (z−) axis is

�B (z) =
µ0Ia

2

2 (z2 + a2)
3/2
ẑ

So for z > a we can do a binomial expansion to get

�B (z) =
µ0Ia

2

2z3
1− 3

2

a2

z2
+
−3
2

−5
2

1

2

a4

z4
+ · · · ẑ

=
µ0Ia

2

2z3
1− 3

2

a2

z2
+
15

8

a4

z4
+ · · · ẑ (8)

We can also find �B from the solution (4) for r > a:

�B = �∇× �A

=
µ0aI

4

r̂

r sin θ

∂

∂θ
sin θ

a

r2
sin θ +

∞

n=1

(−1)n+1 a
2n+1

r2n+2
(2n− 1)!!
2n (n+ 1)!

P 12n+1 (µ)

− θ̂
r

∂

∂r

a

r
sin θ +

∞

n=1

(−1)n+1 a

r

2n+1 (2n− 1)!!
2n (n+ 1)!

P12n+1 (µ)

For µ = 1 (θ = 0) , the theta component is µ0aI4r times

a

r2
sin θ +

∞

n=1

(−1)n+1 (2n+ 1)
r

a

r

2n+1 (2n− 1)!!
2n (n+ 1)!

P 12n+1 (1)

But

P 12n+1 (1) = − 1− µ2 d
dµ
P2n+1 (µ)

µ=1

= 0

So the theta component on axis is zero, as we would expect from the symmetry
(azimuthal symmetry about the axis and reflection anti-symmetry about the
plane of the loop).
The r−component is

Br =
µ0aI

4

r̂

r sin θ

∂

∂θ
sin θ

a

r2
sin θ −

∞

n=1

(−1)n a
2n+1

r2n+2
(2n− 1)!!
2n (n+ 1)!

P12n+1 (µ)

=
µ0a

2I

4r3
r̂ 2 cos θ +

∂

∂µ
1− µ2

∞

n=1

(−1)n a
2n

r2n
(2n− 1)!!
2n (n+ 1)!

P12n+1 (µ)

From the definition of P 1l (Lea 8.53) and the differential equation for P2n+1 (Lea
8.19), we find

d

dµ
1− µ2P 12n+1 (µ) = − d

dµ
1− µ2 d

dµ
P2n+1 (µ)

= (2n+ 1) (2n+ 2)P2n+1 (µ)
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Then we evaluate at µ = 1 where P2n+1 (1) = 1

Br (r, 0) =
µ0a

2I

4

r̂

r3
2 +

∞

n=1

(−1)n a
2n

r2n
(2n− 1)!!
2n (n+ 1)!

(2n+ 1) (2n+ 2)

Changing to the z−coordinate, we get

Bz (z) =
µ0a

2I

2z3
ẑ 1 +

1

2

∞

n=1

(−1)n a
2n

z2n
(2n+ 1)!!

2n−1n!

=
µ0a

2I

2z3
ẑ 1− 3

2

a2

z2
+
a4

2z4
5× 3
2× 2 + · · ·

=
µ0a

2I

2z3
ẑ 1− 3

2

a

z

2

+
15

8

a

z

4

+ · · ·

which agrees with (8).
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