Example usiI.lg spherical harmonics— Sp 2020
Magnetic field due to a current loop.

A circular loop of radius a carries current I. We place the origin at the
center of the loop, with polar axis perpendicular to the plane of the loop. Then
the current density is
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(You can get this most easily by starting with the expression in cylindrical
coordinates
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and using z = rcos#. See also Lea pg 315 Example 6.7.) Then the magnetic
vector potential is (Notes 1 eqn 21)
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We must take care here, because the unit vector ¢ is not a constant. We must
re-express it in terms of the constant Cartesian unit vectors,
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Now we use our most useful result (J eqn 3.70, spherprobnotes eqn 25 )
to expand the 1/ |# — &| in the integrand. With r = min (r,7’) and similarly
for rs.
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where we used the sifting property to evaluate the integrals over v’ and u/. We
now interpret r~ as the lesser of r and a, and similarly for 7.

To do the integral over ¢', we rewrite the sines and cosines in terms of
exponentials:
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The integral is zero unless m = =+1. (Be alert here— if you use the mantra
"axisymmetry so m = 0" you will get into big trouble!) With m = +1 we get:
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and with m = —1 and ¥; _; = —Y}} (spherprob notes eqn 24)
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The sum over [ starts at 1 now because with [ = 0 there is no m = £1 term.
Then
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We might have expected to find that Aisin the ¢ direction, parallel to j Check
dimensions: A is current times L, which is consistent with (1).

We can simplify a bit by inserting the value of P! (0). First note that P
is even if [ is even, and odd if [ is odd. Since P/™ is proportional to the mth
derivative of P;, P/™ will be odd if I + m is odd and even if [ +m is even. (Lea
pg 385) So P™(0) = 0 unless [ + m is even, or, in this case, [ is odd. Note
that this result is due to the reflection anti-symmetry of B about the plane of
the ring.

Now we can use the recursion relation (J3.29 or Lea 8.37)
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Thus, using Lea 8.47, with [ = 2n + 1,
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Note that Pi (1) = —\/1 —pu2 = —sinf (Lea Table 8.1), so P} (0) = —1.
Thus (2) becomes
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Outside the loop, 7 > a, and
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For r > a,n =0 (£ =1) is the dominant term:
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where 1m = 7a?I % is the magnetic moment of the loop. Compare with Jackson
equation 5.55. Then, in this limit
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This is a dipole field, as expected.
Inside the loop, r < a and we have:
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Near the center, r < a, the n = 0 term dominates again, and we have:
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a uniform field, as expected. Compare with Lea and Burke equation 28.7 with
z=0.



Field on axis:
From LB 28.7, the field on the polar (z—) axis is
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So for z > a we can do a binomial expansion to get
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We can also find B from the solution (4) for r > a:
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For p =1 (f = 0), the theta component is ﬂj;—[ times
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So the theta component on axis is zero, as we would expect from the symmetry
(azimuthal symmetry about the axis and reflection anti-symmetry about the
plane of the loop).
The r—component is
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From the definition of P! (Lea 8.53) and the differential equation for Py, 1 (Lea
8.19), we find
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Then we evaluate at =1 where Po,y1 (1) =1
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Changing to the z—coordinate, we get
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which agrees with (8).




