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Let’s look at a particle moving in a uniform magnetic field  = 0̂ We can satisfy the
Lorentz gauge condition


 = 0

and the relation  = ∇×  with the potential

 = (0 0 0 0)

The corresponding canonical momentum is:
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and Hamilton’s equations are:
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where the only non-zero component of  is 12 = −0 since 1 ≡ − 

 Then from

Hamilton’s equations (1), we get:

 0


= 0⇒  0 = 0 =  = constant (2)

Thus the particle’s energy remains constant.
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where  is the −component of the 4-velocity, =  and  is the 3-velocity. We may
choose our origin so that  = 0 when  = 0 and then:

 = −0


 (3)

The next equation is:

 3
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= 0⇒  3 = 3 =  =  = constant

Thus the particle’s velocity component along the field remains constant. The last equation
is:
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where  = 2 = −2 We may insert the result (3) on the right hand side:
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which we may integrate immediately to get:

 =  cosΩ + sinΩ

with Ω equal to the cyclotron frequency:

Ω =
0



Then from equation (3), we have




=  = −Ω ( cosΩ + sinΩ)

and thus
 = − sinΩ + cosΩ + 

Since we have already established that  remains constant (eqn 2), we may write  = 

We may also choose the origin of  (and ) so that:

 =  cos
Ω



(i.e.  = 0) and again, careful choice of origin allows us to take  = 0so

 = − sin Ω


which is circular motion with angular frequency Ω =  and radius  No
surprises.

It is sometimes convenient to write the angular velocity as a vector. Remember that 
points along the axis of rotation, per the RHR. This particle is gyrating with  decreasing,
so Ω is in the negative −direction, and thus:

Ω = − 
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