Motion using Hamiltonians
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Let’s look at a particle moving in a uniform magnetic field B = Byz. We can satisfy the

Lorentz gauge condition
L 0, A% =0
and the relation B = V x A with the potential

A% = (0,0, Bgz,0)
The corresponding canonical momentum is:
P =p® + %Aa = (po,pl,p2 + %Boﬂ:,p3)

and Hamilton’s equations are:

dP* q q
—:—P——A)@“AB 1
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where the only non-zero component of 9 AP is 9' A = — By, since 9" = —%. Then from
Hamilton’s equations (1), we get:
dpPY
e 0= P = p” = ymec = constant 2
=
Thus the particle’s energy remains constant.
P2
d— =0=P?=p2+ gBozz: = muy + gBO:z; = constant
dr c c

where u, is the y—component of the 4-velocity, = yv, and ¥ is the 3-velocity. We may
choose our origin so that «,, = 0 when z = 0, and then:

Uy = ———2 ?3)

The next equation is:

dpP3

——=0= P3 = p® = mu, = ymv, = constant
Thus the particle’s velocity component along the field remains constant. The last equation
is:

dpP! q

= = 1 B

= - (u2) (=Bo)

dp' d q q

E = E (mul) = E (*Uy) (7BQ) = E’uyBo



where u,, = u? = —uy. We may insert the result (3) on the right hand side:
dut  d%x qBo\>
dr drr (%) v
which we may integrate immediately to get:
= AcosQr + BsinQr
with © equal to the cyclotron frequency:

q- o
mc
Then from equation (3), we have
% =uy = —Q(AcosQr + BsinQr)
-

and thus

y=—AsinQr + BcosQr +C
Since we have already established that + remains constant (eqn 2), we may write 7 = ¢/
We may also choose the origin of 7 (and ¢) so that:

Qt
z = Acos —
v
(i.e. B =0), and again, careful choice of origin allows us to take C' = 0,s0
Qt
y = —Asin —
Y

which is circular motion with angular frequency Q2/y = eB/ymc and radius A. No
surprises.

It is sometimes convenient to write the angular velocity as a vector. Remember that &
points along the axis of rotation, per the RHR. This particle is gyrating with y decreasing,
so () iis in the negative z—direction, and thus:



