Green’s function notes 2020

1 Introduction

Back in the "formal" notes, we derived the potential in terms of the Green’s
function.
Dirichlet problem: Equation (7) in "formal" notes is

1 1 0Gp (Z,7)
d(7) = Gp (2,7) p (@) d3% — — | & (&) —=—2"L dA 1
@ == [ Go @) @) ¢ - - [ @@ B2 1)
which is also Jackson eqn.1.44. The Dirichlet Green’s function is symmetric in
Z and 7’ (see Lea §C.7.1 for the proof).

C"'YD (f, fl) = GD (flvf)

Neumann problem: Writing <®>g = % S ¢ ® dA, the average value of
the potential over the surface S, equation (9) in "formal" notes is

/V Gy (7,7) p (7)) PF + % i GN%CZA’ @)

In order to make use of these expressions, we need a form for the Green’s
function that is relatively easy to integrate. That suggests that we expand
the Green’s function in orthogonal functions. The Dirichlet Green’s function
is symmetric in the two sets of coordinates & and #'. (See Lea pg 514 and J
problem 1.14.) In the Neumann case it is possible to impose the symmetry as
an additional condition. (In problems 1.14 and 3.27 you can see why this does
not affect the computed potential). So it does not matter whether we compute
G(Z,7") or G (', %) .1 find it easier to use T as the variable and &’ as fixed while
finding G to reduce the number of primes I have to write. Then the differential
equation satisfied by G is ("formal" notes eqn 3):

V3G (2,7) = —4nd (T — ) (3)

(@) — <P >g=

4’/T€0

This means that G represents the potential at & due to a unit point charge!
at 7', multiplied by 4mweg. This shows that the physical dimensions of G are
1/length.
The boundary conditions are
Dirichlet case:
Gp (Z,77) =0 for ¥ on S (4)

and
Neumann case:
OGN
on
where A is the total area of the surface S bounding the volume V, and, as usual,
7 18 the outward normal.

:ﬁ-ﬁGN:—% for Z on S (5)

!In 2 dimensions it is a line charge.



2 Division of region method

The 10-step method for finding G is outlined in Lea (pg 515). We begin by (Step
1) drawing the region under consideration and (Step 2) choosing a coordinate
system so that the boundaries are represented by constant values of one or more
of the coordinates. In this method (Step 3) we place the unit point charge at
an arbitrary point &’ within the volume, and (Step 5) use this point to divide
the region into two separate regions, I and II, with @’ on the boundary between
them. Then G satisifies the simpler differential equation

V3G (#,7) =0

within each of regions I and II, (but not on the boundary between them). This
means that we can (Step 4) make use of the eigenfunctions of Laplace’s equa-
tion.

2.1 Dirichlet Green’s Function in Spherical Coordinates

Suppose our volume is the interior of a sphere of radius a. We place a unit
point charge at an arbitrary (but, for the moment, fixed) point in the region
with coordinates r’, 6, ¢'. This point then divides the volume into two regions:
Region I 0 <r < 7/
Region II: ' <r <a



(Step 6) Then in region I the appropriate solution to Laplace’s equation is
oo +1
Gr(@a) =Y > Apmr'Yim (0,9) (6)
=0 m=-—1
where we have used only the functions r! and excluded r—(+1) because the
potential should be finite at » = 0. The dependence on the coordinates /.68’
and ¢ is contained in the coefficient A;,,.
Region II contains neither » = 0 nor » — oo, so we need both functions of

G]] Z Z <Blm7" + Cl(_i_l)Ylm (97(1))

=0 m=—1
However, here we have to deal with the boundary at r = a where G has to be

Zero:
> Clm
GII xon 5, T Z Z (Blma + l+1) Yim (97 ¢) =0

=0 m=—1
We make use of the orthogonality of the Y}, to argue that each term must
separately equal zero:

Then

G 5)= 3 3 Bun (1~ ) ¥ (00 g

=0 m=—1
We still have two sets of unknown constants: the A;,, and B;,,. But we have
one more boundary to consider at 7 = r’. (Step 7) The first boundary condition
we need is continuity of the potential (G) at r = r'.

o

G[ (f, f’)T:W = Z Z Alm lm (9 d))
=0 m=—1
oo+l

> Y B

=0 m=—1

a2l+1

/)l _ W] Yim (0,¢) = Gi1 (2,%),._,.

Again we make use of the orthogonality of the Y}, to argue that

N N a2l+l
Aim (’I“ ) = Bin (T ) - W

for each [, m. Thus

oo+l ) a2+l
G (2,7) = Z Z Bimr 1*(7“,)7_5_1 Yim (0, 0)

=0 m=—1

oo+l g2+l
Grr (7,7) Z Z B! (1 - m) Yim (0, 9)

=0 m=—1



We'd like to display the symmetry in r and 7’ more obviously, and we can do

that by relabeling

Bim = B (7"/)[

(Remember that for the moment 7’ is a constant.) Then

) o) +1 N a2l+1
Gr(&@) = > ) B ()r 1_(7"’)7“ Yim (0, 9)
=0 m=—1
o+ ! q2l+1
@) = 3% Bun () (1l—+>Yl 6,6)
1=0 m=-—1
or +1
o > q2l+1
GEE) =YY Bin () ot (1 — W) Yim (0, ¢) (8)
=0 m=—1 >

where rs = max (r,7') and the same expression (8) holds in both regions.

We still need to find the §;,, and to do this (Step 8) we make use of the
differential equation (3). First we insert expression (8) for G and evaluate the
derivatives in 0 and ¢. We express the delta function in terms of the spherical
coordinates using the result of Jackson Problem 1.2.

10 9 o M z g2+l
VG = —— 2—G)+V2 . m (7 l<1——> Yim (6,
r2 Or (T or ang ;";lﬁl (T) r 7”2>l+1 l ( ¢)
oo Al 2041
10 0 I a?tt

= Z Z ﬁlmﬁa [Tza (7'/) T'l <1 - m)] Hm (97 (rb)
=0 m=—1 >
_ﬁ Z Z ﬁlm (T/) r <1 - m) l (l + 1) Yim (97 ¢)

=0 m=—1 >
4

= 0= (u—p) 5 (- )

Now we multiply both sides of the equation by Y}},, (6, ¢) and integrate over the
whole solid angle of the sphere. On the left hand side we use the orthogonality
of the Y},,. On the right hand side we use the sifting property.

By O L0, a2l'+1 (T/T)ll a2V +1 o
~ - 1 — T o7/ 11 - Lo ! 1 - 1
T2 87“ T (97“ (T T) 7“2>l,+1 Bl m T2 7“2>l/+1 l (l + )
4 "
= _ﬁé (7“ — 7“/) }/1/7”/ (0’, ¢I) (9)

Now we can drop the primes on !’ and m/. Thus each f3,,, contains a factor
Vi (6/,4).
* / /
/Blm = 'Ylm}/lm (9 o )



and eqn (8) becomes
) o +I N a21+1 .
GEa) =Y Y ') (1= T ) Yin (0,005 0. 6)
=0 m=-—1 >

Now we have symmetry in all the coordinates, and the remaining set of constants
~1m should be independent of all coordinates. The remaining equation (9) takes
the form

Yim O [ 50 ! a?t1 (r'r)! a? 1 _ Ar
75 |:7' 5(7"/7') (1@ 77[7” ’[“2 1-— 7«2>l+1 l(l+1)—*7a—26(7"*7'/)

(Step 9) To make use of this equation we multiply both sides by 72, then inte-
grate across the internal boundary from r =1 —¢ tor =1/ + ¢.

r'+e o o a2+l a2+l
2 Y 7 N\
m — — 1——— || — 1-— L(I+1)sd
Y1 /T,_‘E {8r [7" o (r'r) < Til+1>:| (r'r) ( r2>l+1> ( )} T

r'+e
— —471'/ §(r—r')dr

! —¢g

The integral on the RHS equals 1. The second term on the LHS — 0 as ¢ — 0
because the integrand is continuous by construction and has no singularities in
the range of integration. Thus we are left with

20+1
. 2 l 0 1 a
i‘% YimT (rl) E |:T (1 - @)}

At the upper limit, r =7' + ¢ is >/, so r~ = r. At the lower limit, r =7' — ¢

is <7’, 80 r~ =r'. Thus
o CL2l+1
b " or lr (1 (r,)21+1 , = —Ar

. 9 CL2H~1
Vi (1) {8— [ZT}
20+1 20+1
1+2 -1 a -1 a
Yim ()" [z )+ 0+ 1) g — L) (1——(7"/)2“1)] = A

e
= —A4r

r'—e

(r)
20+1 20+1
142 a a
Yim (1) (1+1) ()T +l(r,)l+2‘| —d4r
47 1
Tm = gy 1 gt
Yim 18 independent of all coordinates, as expected, and thus
oo +1 l
L A (7"/) rl [ g2+t y
G (#) = Z Z 2l +1 q2+1 \ j2+1 1) Yim (0,6) Yoz, (6/,07)  (10)
=0 m=—I >



(Step 10) G has dimensions of 1/length, as required, and displays the necessary
symmetry. It is also positive, since a > r~ throughout the region. In the limit
a — 00 we get

oo+l A (T/)l ol
¢ - Z Z 204+ 1 ¢ 2l+1 5T Yim (0,9) Vi, (9/ d)l)
=0 m=-1
S 1
* / '\
;n;l 21+1 l+1}/lm (07¢)}/lm (9 7¢) - |f—f’|

(spherprobunotes eqn 25) which is the correct result for a point charge in infinite
space.

2.2 Use of the result

Suppose we have a sphere of radius a with potential V' on one half and —V
on the other half. Inside the sphere, a line charge of length 2b (b < a) with
uniform line charge density A runs along the diameter of the dividing plane and
is centered at the center of the sphere. Find the potential inside.

First we have to choose coordinates. No matter what we do, we do not have
azimuthal symmetry. I'm going to put the polar axis along the line charge,
giving a charge density

A

2mr2

p (%) = (=1 +6(u+1)]S0O-7)

We can check this by finding the total charge on a differential piece of the line
that runs from r to r + dr with » < b. Then

2
_ _ 2
dg = 2X\dr= / /1 27rr2 1) 40 (u+ )] r*drdude

= 5 ( )2mdr =2Xdr Vv

(Do you understand the factor of 2?7 Draw a picture and see!) The potential
on the surface is then

b = +V if 0<o<m
-V if n<o<2n

Thus the potential is (eqn 1)

— 1 ool e ja—’ A / / ’ N2 713 1 3!
@) = 4m_/_o/ [, ] @ @#) i b - so S ) ¢ dantas

2m +1 = =
/ @) 261 (“”f ) g (11)



Now the field point & is fixed and Z’ is variable. The first integral gives potential
®, where

2 41 pa © ll a2+l .
drea (& / / /0 > Z 21+1 a2l+1 (ri’“ 1) i 6, )Yin (0,9

I=0m

2 W 60 =)+ 8 +1)]S B —r) () dr'dyldd

By orthogonality of the ¢’ the integral over ¢’ gives zero unless m = 0, in
which case we get 27, so we have

i dr A (r )l L (a® 1! 2 / / / / /g
0 2l+1a2l+1 et L) NP () P () [0 (0 = 1) +0 (W + IS (b — 1) dridps
>

where Njg = /(214 1) /4n. Next we use the sifting property of the delta-
functions to do the integral over p'.

2[+1
[ (S - 1) BB+ REDIS 0 d

Since P, (—1) = (—1)", the result is zero unless [ is even, when the square bracket
equals 2. This is expected due to reflection symmetry about the plane p = 0.
Finally we do the integral over r'. The integrand is zero for ' > b, so we have

. o rl b n g2+ ,
treg®y () = Y 2)\W/0 (') <r2>l+1 —1) ') (12)

=0, even

Looking at the integral over r’ by itself, we note that if r < b we have to split
the integral into two parts: 7’ <7 and v’ > r .

b n a21+1 , T N a2l+1 , b N a21+1 ,
[or(-o = [or(mm-oe for ()
- TH'l a2l+1 ) a2l+1 1 1 bl+1 _ TH—l

41\ 2 l bl ol I+1

a2l+1 (21+1) a2l+1 bl+1
rol(l4+1) B I41

for r<b, 1>0

Note that this fails for [ = 0 because of the [ in the denominator. For [ = 0, we

get
/Ob(%_l)dw _ /Or(g_l)dm/r”(;_l)dw

a—r—i—alng—(b—r)

a—b+amé
,



Including the factor of 1/4me, the first term in the potential for r < b is

o 2A 1 b
oy (%) = Inzo {a (a—b—i—aln;) Py (1) +
0 l 20+1 241 141
> g |t ) R
NI e N T ) B R
A b b
- 2w {(15Hn?) (13)
7t [ p2tl
" Z { +1 W<1+l+1a2l+1)]Pl(N)
=2, even

The log term in (13) is expected near a line charge, and even ! indicates the
reflection symmetry about the equatorial (z = 0) plane.

If » > b then r = r- throughout the range of integration, and the integral
over r' is

b 2+1 I+1 7 2041
1fa b a
/0 (r") <r2l+11>drll+l<r2l+11) for >0
and the potential (first term) is
by Tl bl+1 2l+1
1 (¥ Z 2meg a1 41 (Tﬂ*l B 1> Pi(n) (14)
1=0,even

Separating out the [ = 0 term, we have

220 /1 1 b > Pyl g2+
() = ;T a ~1) A
! (CU) 4reg (7” a> + 2meg l:QchCD a2l+1] 41 <T21+1 ) [4 (/1’)

The first term is the potential due to a point charge ¢ = 2Ab at the center of a
grounded sphere of radius a. Again this is what we would expect. Finally we
note that the potential ®; is continuous at r = b.

We still need to evaluate the second term in (11). The outward normal from
the volume at the surface r = a is n = +7, so

G, =, OG
o ="V

Thus we have

27 +1
n®y () = / / (@) 26 (“)dA/

w 2m +1 o+l N 20+1
- v([-[) ] XX g (e
0 . _q or P 20+ 1 a2+ \ p2Ht

X Yim (6,0) Y, (9/, d)l) a2du’d¢’

r’'=a



On the outer surface, 7’ = a > r, so r~ = r’ and we have

o (T’)lrl a2+l . B 9 (T’)lrl a2+ .
or' a2+l r2>l+1 - T 9y g2t (T,)21+1 -

r’'=a

A9 G2+ N
I RS (T,)l+1 = ()
r’'=a
rl ( q2l+1 1
= ——— | —(+1)——= —1()
20+1 ( I+2
a ) .
rt -1 rt
So
o] +1 Tl T 2T +1
o (H) =V D Vim (0:0) (/0 —/ ) /1 Yo, (6.6 dyl'dg’
1=0 m=—1 m -
Doing the integral over ¢’ first, we get zero if m = 0 and for m # 0
. Rk . ;12T
/7\' B /27r e—imqbl d¢/ _ e—zmqﬁ B e—zmqﬁ
0 . —im 0 —im
e—im7r -1 e—im27r _ e—i'nm
- T Sim —im
- Za-ym
m

So we get zero for m even and 4/im for m odd. Since I > m, the sum over [
now starts at 1. Thus the integral has reduced to

oo +1 +1
Ba@) =Y Y N [ a

mn 1
=1 m=—1, odd

P™ (1) is an even function of u if [ 4+ m is even and an odd function if I + m is
odd. Thus for the integral over 1’ to be non-zero, we need [ + m to be even,
and thus [ odd. Let’s call the integral I;,,,, and then we have

oo +1
Oy () =4V > Y] (g)lNlmWLm

I=1,0dd m=-—1, odd

Finally we should tidy this up by combining the positive and negative m terms.
Remember that ¥; _,, = (=1)" Y}’ (spherprobnotes eqn 24) and so N; _,,, ;" =
(=1)" Ny P™. That makes Ni _pLj —pm = (—1)"" NipIjy. Thus,

Ilm Il,—m

o )" Iy _;
NimYim (0,9) im + Ni,—mYi,—m —im Ni B (1) ezm(bﬁ - (=" le,mplm (1) %e me

I
NG, P (1) = sinmep



and so the second term in the potential is

@ - w3 Y (5) N2 (1) 22 sinms

l=1,0dd m=1, odd

= oA+ 1(0-m) . I
=W X X () T ) sinme

l=1,0dd m=1, odd

2V H r\ 204+ 1 (1 —m)!

- Z Z o ———= I P (p) sinme (15)
|
g l:d}fm:L ! (a) m  (I+m)!

Compare ®; (Z), in method and result, with pages 393-395 in Lea.
The total potential is the sum of the two terms (13 or 14 and 15):

B A b b =@+ o A
D () %EO{(l—aﬂnT)Jr > l(l+1)_lbl<1+l+1<a)

=2, even
W X L @D (I—m) !
+— Z Z —'Ilm (—) P (p)sinmg ...r<b
I=1,0dd m=1, odd l + m) a

P, (u)}

A /11 b > Pyl g2+1
2@ = . ~1) P
(1') 271'80 (’I“ a) + 271'60 l::)z a2l+1] +1 <,r21+1 ) 1 (,UJ)

+1
+l Z Z (2 +1) —gifzm (2)113[” (u)sinme ...r >b

™
l=1,0dd m=1, odd

Let’s evaluate the first few terms in our result.
I :/ (—sin6)sin0do = —=
0 2
Thus for r < b
. A b b 5 2 r2pl1 5
@ = 5 {(1‘5““;) 5w —33] 5 (3w —1)}

r

——3-— <a> (—sinf)sing + - -

A b b [ 72 b\ (3cos?0 —1)
= ng {<1a“ﬂ;) MK (3%)} 1

+%£Sin9sin¢)+~' T <b

10



and for r > b

A1 1 A 2B [ad 1 3V
o (@ o ——(=-1)=Bp?*-1)+=-si i
(@ 2meg <r a) + 2meg ad 3 <r5 > 5 (3u )+ 5 a81n9sm¢>+

1 1 212 5
_ {——+i<%l> (3008291)}+%£sinﬁsin¢+~~

2meg |r a  64db

Lea 8.67 gives the value of I, for larger odd values of [ and m.

2.3 Dirichlet Green’s function in Cylindrical coordinates

Here we will find the Green’s function for the interior of an infinitely long tube
of radius a. Because we are going to use the result to find a potential that does
depend on z, we need the three-dimensional Green’s function. (Step 1: see Lea
Figure C.6) (Step 2) We choose cylindrical coordinates with z-axis along the
axis of the tube, and (Step 3) place our unit point charge at @ with (fixed)
coordinates (p’,¢',2'). (Step 4) The solutions of Laplace’s equation in this
coordinate system are (Bessels notes §1.7)

imae +kz
‘ { N (kp) }e

; I, (kp) sin kz ik
imeo m +ikz
€ { K., (kp) } { coskz € }

The sets of functions {¢™? times J,,(kp) or N, (kp)} and {e™? times sin kz or
cos kz} form complete orthogonal sets of functions, so we may divide our space
in either z or p. (Step 5) Let’s divide in p. (The other choice is in Lea pg
521-525.) (Step 6) Then in region I, p < p/, we need the function that is finite
at p = 0, which is I. Here we have no boundaries at finite z, so we have no way
to determine specific values for k. We have an integral instead of a sum:

or

“+o0 o'e)
Gr(#3)= > / Ay, () L, (kp) eF2ei™mPdk; (16)

m=—oo "

In region II, a > p > p’, we have both modified Bessel functions.

400 oo
G (2,7) = Z / By, (k) [In, (kp)_;’_Cme(kp)]eikzeinupdk

m=—0oQ

At p=a, G;; =0, so

+o0 00
0= Z / By, (k) [Im (ka) + Ch Ky, (k}a)] eikzeim¢dk

m=—0o0

By orthogonality of the e?*#¢!™? in z and ¢, we can equate each term separately
to zero, so we get

I, (ka

o In(ka)

K, (ka)

11



and thus

G +§0°: / k ) Im (ka‘) K (k’ ) ikz z'md)dk
II m=—oo p Km (ka) " P c ¢
(17)

(Step 7) Now we use continuity of the potential at p = p’ to get

+00 .
Z / kp ) zkzezmqbdk

+oo
_ Im (ka’) ! ikz jimde¢
- m;oo/ |: kp ) K’m (ka) Km (kp ):| e "

and again by orthogonality we have

Am(k) =B, (k) |:1 _ I, (ka) K,, (kp/):|

I’"L (kp/) K//YL (ka)
Thus (16) becomes

= Ly (ka) Ko, (k) ik _im
-2 [ ) 1= 2 R | B o) e

) (18)
We may combine the two results (18) and (17) to get
+oo
-y / Bun (k) g (ps ) €% (19)
where L, (ka) Ko (kp')
m (ka) Ky, (kp
9ImI |: I"L (k?p') K"L (k:a) :| (kp) (20)
and L, (ka)
m a
m — - m K’"L

(Step 8) Next we make use of the differential equation (3), expressing the
delta function on the right in cylindrical coordinates (¢f J Problem 1.2):

10 1 902G 62(}’ 4
V3G =~ — (pG) + +5z =00 z—z
2o, PO+ 5 IR ALICREOLICRED
19 9gm(p) m? }
zkz zmqﬁ _ m_k2 m dk
m;oo/ {papp dp 29 g

- 76<p—p’>6(¢—¢>’)6<z—z’>

12



Now we multiply both sides by e~m'¢ and integrate from 0 to 27 in ¢. On the
RHS we use the sifting property, and on the left hand side, we use orthogonality
of the e™™?:

pOdp~  Op

—00

o0 72
27‘(’/ BWL’ (k) eik‘z {lgpag’ln’ (p) _ (me) Gy — ng"Ll}dk — —477((5(p _ pl)d(z _ ZI) e—i’nﬂdw

Now we can drop the prime on m. Similarly, we multiply by e~ik'z

over all z. We use Lea eqn 6.16 to get

and integrate

> 10 agm (P) m? } 2 TV A Y
B, k)2md (k— K {—— - — m—k2 m dk = —=§ —oe 1kze img¢
/_Oo (k) 2mo ( ) 55" op 79 g p(p p)
19 9gm(p) m? 9 } i )
By, (K {—— e — g — (K g, CZ85(p— o) e iK' g—ime
(k) 5" op 79 (k)" g (p—+")

Drop the primes on the k', and relabel, remembering that 2z’ and ¢’ are fixed
for the moment. o
B, (k) = ﬁm (ki) e—zkz e—zmqﬁ

(Step 9) Finally we multiply both sides by p and integrate across the boundary
at p=p'

P +e 9 agm (P) m2 o +e
By () / {—pi - —Gm — k2pgm} dp = —/ §(p—p')dp
p—e Op" Op p e

Making use of the fact that g,,/p and pg,, are well behaved in the range of
integration, in the limit ¢ — 0 we get

. Ogm ()" 1

™

p'—e

At the upper limit we are in region II where g = g;; (21), and at the lower limit
we are in region I where g = g; (20), so

’ / / Iy, (ka) ., / I, (ka) K, (kp/) / / - 1

6m (k)kp {|:Im (kp)i Km (ka)Km (kp ):| - |:1 Im (k:p’) Km (ka):|jm (kp)} - *E
/ I, (ka) ., / Ky, (kp') Iv/n (kp') o 1

ﬁnL (k) kp {_Km (k’a) KWL (kp ) + I’HL (ka) Km (ka) Im (kp,) } - _;

Thus

1 K, (ka) Iy, (ko)
wkp' I (ka) [K7, (kp') I (kp') — 17, (kp') K (kp')]

6m (k) -

The denominator contains the Wronskian W (kp’) of the modified Bessel dif-
ferential equation. To evaluate it, let’s use the large argument form of the

13



functions. We can do this because W (z) is the same function for all z. (Also
see http://www.physics.sfsu.edu/ " lea/courses/grad /Besselwronskian.pdf. )

K, (z) ~ % T Iy (x) ~ \/217r—xez
Wiz) = K (2)In(z) = I, (2) Kn (2)
T (1 1 1, [r.(1 1\ e*
- \fi (729:3/2 2z \/; <ﬁ 2x3/2)m
- - (22)
Thus LK (k VL, (kel)
__Z a P
and then (18) becomes
oo m ka I, (kp) ik(z—2
Gr (&) = m_zoo/ k) eik(2=%)
I, (ka) m (kpl) eim(¢—¢')
. [1 T (k) Fom (ka>]fm (kp) o
+oo
= 2 0 [ (ke Ko ) — Ko (k) B ) P e
for p < p’ and (17)
CHEE) = S [ REnlel k’g;’“”)e“f('z—z’) [fm (ko) — Iﬁ;((’jjj)m (kp) | e

m=—oQ

for p > p/, or, in both cases,

) im(d)—d)')dk

int((b—(b/)dk

Z / 7” e (== ) [Im (ka) K (kp) — K (ka) I (kp)] lm(qﬁ_qﬁ/)dk

+oo
— 2 > [T U (ha) Ko 02 = Ko ) D (b, )] e

(ka)
WL_—OO 7”

(23)

(Step 10) The Green’s function has dimensions 1/length (from the integral

over k) as expected. It also displays the necessary symmetry. As a — oo,
K, (ka) — 0 and so

G—>— Z / I (kp) Ko (kps) e ik(z=2") yim(6=¢") gj — 1

|7 — 7|
m=—o00
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(Jackson 3.148), as required.
Now let’s solve the same problem that is in the math phys book (pg 524)

with V on the wall between z = —a and z = +a, and the rest of the cylinder
grounded. The outward normal is & = +p, and at p’ = a, p5 = p/, so
1 0G(Z, @)
°@) = - | ® 2504
(@) @)

_ / /zﬂ/+oo +00 E:Z;eik(zz')eim(qaqs’)

< 5 I (50) Ko () = Ko (k) Ly (k) thad 0

The integral over ¢’ gives zero unless m = 0, so ® is independent of ¢, as
expected.

+o0o
) / / To ( k:a ==k I (ka) Kb (ka) — Ko (ka) I} (ka)] dkadz’

Here again we have the Wronskian of the modified Bessel functions W (ka)
(22), so

—+o0 a ) ,
(%) = + / IO(kp)e”“(Z*ﬂk—deadz’

W /+°° Iy (kp) e** sin ka
7)o Io(ka) k
2Vo [T Iy (kp) sin ka cos kz

~ 7 )y Io(ka) PR

The result is dimensionally correct. Since p < a, Iy (kp) < I (ka), and so the
integral converges. The potential is even in z, also as expected. Let’s see how
this looks for p — a.

zk:z +o0
®(a,2) = % Smkadkf—// k= cos ku dkdu
_ EQ’H’/ 5(z+u)+6(zfudu
™ 0 2

= Vif0<z<a (from the second delta function)
= Vo if —a<2z<0 (from the first delta function)

0 otherwise

15



So we get back the correct boundary values.
Comparing with the result in the book (pg 525),

2V Z Jo (Zonp/a) [1 — e~ %o cosh (ac()ng)] ,

Zon Jl xOn

we see that the main difference is that we have an integral instead of an infinite
sum. We can evaluate the integral numerically. For z = a/2, we have

p=0.la: 0+°° Lo 2k) sink cos(h/2) g — (.768 66

Io(k)
+ si S
p=03a:2 [ %%Zmdk 0.78518
_ . +oo Iy(.5k) sinkcosk/2
p=05a:2 [ LLedsdnkenti2 ) — 0.82058
p=0.Ta: 0+°° %%lmdk = 0.87866
+ si S
p=09a: 2 w%%lmdk 0.957 96
For z/a =2, p = 0.1a we have 2 f+°° I?O }S)Mdk 6.8778 x 1072

Compare with Lea Figure C.7. The results are the same.

3 Expansion in eigenfunctions without division.

This method is outlined in Jackson section 3.12 and Lea sections C.2 and C.7.5.
The result is a single function, valid everywhere in the region, at the expense of
an extra sum. We’ll begin with a one-dimensional problem, and then extend
the result to three dimensions.

We start with the Sturm-Liouville equation

= (@E) s+ rw@y=o (24)

valid for a < x < b, where we either have boundary conditions (Dirichlet or
Neumann) that guarantee orthogonality of the solutions, or else f(x) = 0 on
the boundary. The solutions are the eigenfunctions y,, (z) with eigenvalues A,,.
Let’s normalize the eigenfunctions (as we did with the Yj,,) so that they satisfy
the orthonormality relation

b
/ w () Yn (T) Y () dT = Gy, (25)

Now we look for a Green’s functions that satisfies the differential equation

% <f%fc’w/)> — g (@) G (z,2) + I (2) G (z,2)) = —4nd (z — ') (26)

where the constant A\ does not equal A, for any n. Since G is expected to be
well-behaved, we may expand G (z,2’) in the eigenfunctions y, () :

= Y (@) yn ()

16



and substitute into the differential equation (26).

> (@) dci, (f B (& ) Z%L )+ 2w (z Z% ) Yn (z

n

= —And(z—2a)

We use the eigenfunction equation (24) to express the first two terms in terms
of A\pyn:

3 (@) [ (@) o (2)] + A (@ }:% )y (x) = —476 (x — o)

Now we multiply both sides by y,, () and integrate over the range x = a to
b. We use orthonormality (eqn 25) on the LHS and the sifting property on the
RHS.

(A= A) Vi (2) = =47y (2)
Thus ()
Ym (T
m 4 2N
T ) = TN

Now it is clear why A\ cannot equal any A,,. Then

(v.2') = 4#2 yn yn (27)

To extend this result to potential problems in 3-d, we start with equation
(3). The eigenvalue X in this equation is zero, so we need eigenfunctions that
satisfy an equation with non-zero A, and that is the Helmholtz equation.

V2 (Z) + K2 (£) =0

(We have solved this equation before: See e.g waveguide notes pages 8, 9 and
11.)

Let’s find the Dirichlet Green’s function for the interior of a rectangular
box measuring a by b by c. We put the origin at one corner, with Cartesian
axes along the three sides, and solve by separation of variables: f(x,y,z) =
X ()Y (y) Z (2). Then the eigenfunctions we want are the solutions of

XII Y/I Z//

et F+ 4K =0

<ty 7t
with X (0) = X(a) =0,Y(0) =Y () =0and Z(0) = Z(c) = 0. Then
X =sinnwz/a, Y = sinmmy/b and Z = sinprz/c, and

2 2 2
2 2 n m D
knmp ™ ( + ﬁ + )

17

x)



We still need to normalize the eigenfunctions. The orthogonality integral is

a
o NTT a
sin® —dx = =
0 a 2
so the normalized function is

Xn(x)\/gsn%

and so the normalized eigenfunctions are

Jrmp (2,9, 2 \ﬁsm nmc\[ 4l y\/7 Pz

Now we just put this result into (27) (extended to 3-d) with A = 0.

~ . . . ’ . / . /
BIL sin =4 sin P2= sin BEE sin S sin P

8 2o » sin
) o
G@a) = Ar|y\[=] D > > - n2
32 i i i sin 2IE sin 24 sin P22 sin A0 " sin ML sin m
- m2
mabe n=1m=1p=1 ?+b_2+c2

Again check that G has dimensions of [1/length]. The benefit of this ap-
proach is that we have a single expression that we can use in the whole region.
The disadvantage is that we have an extra sum.

Example: Suppose the box, with its walls remaining grounded, contains a
sheet of charge with uniform surface charge density o that extends from z = a/4
to z =3a/4 and y = b/4 to y = 3b/4 at z = ¢/2. Find the potential inside the
box.

In this case we have the volume integral in (1), but the surface integral is
zero. The charge density is

p(T) = 05<zf§> a/d < x < 3a/4, bj4 <y <3b/4

= 0 otherwise

o (7) = 471'&0/ / / G (Z,7) p (&) dz'dy' dz’

3a/4  3b/4 SR o o Sin B gin MY sin P72 sin 2T2- " sin —W sin 27 2
47r50 7rabc Z Z pz
a

2
n=1m=1 _2 + T_2 Jr ?
c
( —) o' dy'd2'
2
o iiismmsm—bﬂsm%ﬂn%
o n2 | m? | p?
4reg wabcn oo e
3a/4  nnx! , 3b/4 ) mﬂy' ,
X sin dx sin dy
a/4 a b/4 b

18



The result is zero if p is even, so

®@) = 5071'2abcZZ Z

(251) sin 27¢ sin #5Y sin 272

n2 | m?2
n=1m=1p=1,0dd a2+b2 +02
3a/4 3b/4
a nra' 2% b mma! |2
X — coS — cos
nmw a |qq mm b4

PEE sin #o sin P72

o o
= >3 Y (R ;
8071'4

> 2
n=1m=1p=1,odd nm<?+”lr)—é+%>

o 3nmw nmw 3mm mm
cos 1 cos 1 cos 1 cos 1

Now we combine the cosines to get

o0 o0
. 320 p pye sin P Esin M sin P2 pr  onwr . omm . omm
@(ZL’) = 4 E E E 2 SIHTSlnTSIIl?SIHT
E0T
0 n=1m=1p= lodd ”m<?+7?—2+c_2>
e o sin 2XE gin ™ sin P22 omm

320 —1)/2+4(n—1)/24(m—-1)/ 5 . .
— —1)(p a ¢ gin — sin —
8071'4 Z Z Z nmn (n_2 + T; + %) 4 4

n=1m=1 p=1
odd odd odd

If n =20+ 1, then

.@_.(21+1)7r_.l_7r+z_.l_7r T Ir .
sin 1 = sin B =sin 5 1 = sin 5 cos 1 cos 5 sin 1
2 Im l
= \/_<s1n§+cs§)

(=172 it s odd

(—1)1/2 if [ is even

SR

Thus replacing n (odd) with 2n + 1 and similarly for m and p we get

oo o0 00 1)p+n+m+q

. o 16
®(7) = o e Z Z Z ( 2n+1 N Zm-gl) T (2p+1)2)
b

n=0 m=0 p=0 2

2n+1 2 1 2p+1
xsin( n+a )mgsin( m—il—) )ﬂysin( p+c )z

where
. n . m
q = Integer part (5) + Integer part (5)

Check the dimensions!
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At z = ¢/4 we have

2 2
160’@2/ (6071’40) =0 =0 p=0 (271 + 1) (2m + 1) [(271 + 1)2 + (2mJ221) a? + (2p+£) a?

C

(28)

2 1 2 1 2 1
><sin(n+ )7rxs,in(m+ )7rys,in(p+ )7
a

b 4

The diagram shows the dimensionless potential (28), computed using values of
n,m and p from zero to five, and with a = b = c.
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