
Grad B Drift
In a single frame with only a magnetic field  =  () ̂ we have the equation

of motion:
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or, since  is constant (Hamilton notes eqn 2),
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We expect the result to be a gyration plus constant drift, so the equation of

motion should take the form
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With the usual result
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we may rewrite our equation by Taylor expanding  :
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Now we make the assumption that the field is slowly varying in the sense that
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so we may drop higher terms in the expansion. We time average to obtain the

drift., since

 =  ×  + 

and the gyrational part has components that oscillate in time. Similarly

 = 0 +  + 

where  has components that oscilate in time. Thus the second term on the

right hand side of (3) is:
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Now we time average. Only the oscillating part of  contributes, so we get:
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The operator h
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selects out only the component of  − 0 parallel to the gradient of  the 

component here, and so only one component of × in  will contribute to the

time average.
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which is Jackson’s result.
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