
1 Lagrangian for a continuous system

Let’s start with an example from mechanics to get the big idea. The physical

system of interest is a string of length  and mass per unit length  fixed at

both ends, and under tension  Choose −axis along the unperturbed string,
and −axis perpendicular to it. When the string is vibrating, its kinetic energy
is:

 =

Z 
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To get the potential energy, we use the method of virtual work. The net force

on a string segment has components:

 =  cos 1 −  cos 2 ' 0
and

 =  sin 1 −  sin 2 ≈  tan 1 −  tan 2 = 
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Then the virtual work is

 =

Z 

0

 =

Z 

0


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2
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Now integrate by parts, and make use of the fixed end condition:

 = 
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Z 

0

 (0) 0

#
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
h
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i
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Then if  = −∇ then  ·  = − and  = − R  ·  Here

 = −
Z

 =


2

Z 

0

(0)2 

The Lagrangian for the string is:

 =  −  =

Z 

0

1

2

h
 (̇)

2 −  (0)2
i


where

L =1
2

h
 (̇)

2 −  (0)2
i

(1)

is the Lagrangian density for the string.
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The action is

 =

Z
 =

Z 2

1

Z 

0

1

2

h
 (̇)

2 −  (0)2
i


Taking the variation of the action, we get

 =

Z 2

1

Z 

0

∙
L
̇

̇ +
L
0

0 +
L




¸


Integrating by parts gives:

 =

Z 2

1

Z 

0

∙
− 



L
̇
− 



L
0

+
L


¸


Thus for the action to be an extremum, we need

− 



L
̇
− 



L
0

+
L


= 0 (2)

Using equation (1), we find:




(2̇) +




(−20)− 0 = 0

or


··
 − 00 = 0

which is the wave equation for the string.

An alternative approach is to write the string displacement as a sum over

normal modes:

 =
X


 () sin




Then the Lagrangian density (1) is

L =
X


X


̇̇ sin



sin




− 

2

2
 cos




cos





and then the Lagrangian is

 =

Z
L

When we integrate over  the only terms that survive are those with  = 

 =


2

X


µ
 (̇)

2 − 
2

2
22

¶
(3)

The mode amplitudes  act as the generalized coordinates for the string. Then

Lagrange’s equations are







̇
− 


= 

··
 − 

2

2
2 = 0

which is the harmonic oscillator equation with frequency  = ()
p

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2 Lagrangian for the electromagnetic field

Now we want to do a similar treatment for the EM field. We want a Lagrangian

density such that the action

 =

Z
L4

is a Lorentz invariant, and where L is a function of the fields. The "obvious"
invariant to try is

Lguess = 

(Recall this is proportional to 2 −2 an "energy-like" thing.) Here the com-

ponents of the potential  are the "normal modes" — they behave like the 
in the previous section. Then Lagrange’s equations (2) are:





L

³




´ − L


= 0 (4)

To evaluate this, note that

Lguess =
¡
 − 

¢


¡
 − 

¢
and so

Lguess
 ()

=
³



 − 




´


¡
 − 

¢
+
¡
 − 

¢


³



 − 




´
= ( − )

¡
 − 

¢
+
¡
 − 

¢
( − )

= ( − )− ( − ) + ( − )− ( − )

= 4 ( − ) = 4

while
Lguess


= 0

So equations (4) become

 = 0

which are Maxwell’s equations in the absence of sources. We can fix up the

Lagrangian by adding the interaction term 1



 Thus

L = − 1

16
 − 1






With this Lagrangian density

L


= −1



and Lagrange’s equations become

− 1

4
 +

1


 = 0
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or

 =
4




which are the two Maxwell equations that include sources.

3 The Hamiltonian

Now we form the Hamiltonian. First let’s look at the string. Using equation

(3):

 =
X


L
̇

̇ − L

=


2

X


2 (̇)
2 −

µ
 (̇)

2 − 
2

2
22

¶
=



2

X


2 (̇)
2
+ 

2

2
22 =

X




where  is the total (kinetic plus potential) energy per mode. By analogy, we

get for the EM field system without sources

 =
L

 ()
 − L

= − 1

4
 − 

µ
− 1

16


¶
=

1

4

µ
 +

1

4


¶
This tensor is not symmetric, because the first term contains only one half of

the field tensor: rather than 
The conservation laws require that the

energy tensor be symmetric, so we have to modify the result.

4 The energy-momentum tensor

Recall that the field energy density (non-relativistic) is 1
8

¡
2 +2

¢
and the

Poynting theorem may be written





1

8

¡
2 +2

¢
+ ∇ · 

4
 ×  + ·  = 0 (5)
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We’d like to express this result in covariant form. We obviously need something

quadratic in the fields. For example:




 =

⎛⎜⎜⎝
0   

 0  −

 − 0 

  − 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 − − −

 0 − 

  0 −

 −  0

⎞⎟⎟⎠

=

⎛⎜⎜⎝
2 +2 +2

  −  −  −

 − −2 +2
 +2

 − − − −

 − − − −2 +2
 +2

 − −

 − − − − − −2 +2
 +2



⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
2

³
 × 

´


³
 × 

´


³
 × 

´
³

 × 
´

−2 +2

 +2
 − − − −³

 × 
´

− − −2

 +2
 +2

 − −³
 × 

´

− − − − −2

 +2
 +2



⎞⎟⎟⎟⎟⎟⎟⎠
Now we’d like the (0,0) component to be the energy density. We can get that

if we add the tensor 1
4
 =

1
2


¡
2 −2

¢
 Then

Θ =
1

4

½



 +

1

4


¾

=
1

4

⎛⎜⎜⎜⎜⎜⎜⎝
2+2−2

2

³
 × 

´


³
 × 

´


³
 × 

´
³

 × 
´

−2+2

+
2
−2−2

2
−− −−³

 × 
´


−− −2+2
+

2
−2−2

2
−−³

 × 
´


−− −− −2+2
+

2
−2−2

2

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

4

⎛⎜⎜⎜⎜⎜⎜⎝

2+2

2

³
 × 

´


³
 × 

´


³
 × 

´
³

 × 
´


2+2

2
−2 −2

 − − − −³
 × 

´

− −

2+2

2
−2 −2

 − −³
 × 

´

− − − −

2+2

2
−2 −2



⎞⎟⎟⎟⎟⎟⎟⎠
Then

Θ
0 =





2 +2

8
+ ∇

Ã
 × 

4

!
which is part of equation (5). On the right hand side we need 1


 ·  = 1




0

Thus we have the relation

Θ
0 =

1




0
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and so we guess that the full set of conservation laws are given by:

Θ
 =

1






I leave it to you to show that the  =  components give momentum conservation

(Jackson equation 6.122).

5 Angular momentum

Cross products are not proper vectors. They are pseudo-vectors because they

do not transform properly under reflections. Thus it is usually better to express

quantities such as angular momentum of a particle ( = ×) as antisymmetric

tensors. For example the tensor

 =
X

particles

( − )

has three independent compomemts: the components of the vector 

Extending this idea, let’s look at the tensor

 =
X

particles

¡
 − 

¢
The 3×3 spacelike part is the tensor  and thus represents the angular

momentum of the system. In addition:

 0 =
X³





− 

´
where  is the energy of the particle. Conservation of angular momentum for

the system is expressed as  = constant. Thus we conjecture that the full

conservation law is  = constant. (Or equivalently 
 = 0) This gives

for the ( 0) component:

 0 =
X³





− 

´
= constant

Now if we divide through by
P

 we getP
P

= 2

P
P


The term on the left hand side is the position of the center of mass,

 =

P
P


while the term on the right hand side is the CM velocity times 

 =

P
P

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an eminently sensible result.

To get the equivalent result for the EM field we form the tensor

 = Θ −Θ

and then the conservation laws should be given by:


 = 0

Taking  = 0 gives the CM motion as above.

6 The Darwin Lagrangian

The analysis above is for source-free fields. We might attempt to add the free-

particle Lagrangian to get a complete description of the particle-plus-field sys-

tem, but this approach fails because of retardation effects. (The fields propagate

at the speed of light.) We can calculate a complete Lagrangian in a single ref-

erence frame, inlcuding relativistic effects up to order 2 = ()
2


Let’s start with a 2-particle system. Both particles produce fields and both

can move under the influence of those fields. The interaction term for charge 1

interacting with the fields due to 2 is

1


1


2 =

1


( 1)

³
2

2

´
= 1

µ
2 −

1


· 2

¶
(6)

If we now work in a single reference frame and use the coordinate time rather

than proper time as our time variable, we should drop the factor We want to

evaluate this expression to second order in  If we work in Coulomb gauge,

the potential 2 = 2 is exact. We only need  to first order since it appears

in combination with 1 This means we can ignore retardation effects. Then:

2 ' 1



Z 

|− 0|
0

where the transverse current is

 =  − = 22 (− 2)− 1

4
∇
Z ∇0 · 22 (0 − 2)

|− 0|  0

= 22 (− 2)− 2

4
∇2 · (− 2)

|− 2|3

Therefore

 =
2



2


− 2

4

Z
1

|− 0|
∇02 · (

0 − 2)

|0 − 2|3
 0
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Let’s look at the integral. First make a change of origin. Let  = 0 − 2 and

with  = − 2 we getZ
1

|− 0|
∇02 · (

0 − 2)

|0 − 2|3
 0 =

Z
1

|− |
∇

2 · 
3

3

=
1

|− |
2 · 
3

¯̄̄̄
 at ∞

−
Z

∇

µ
1

− 

¶
2 · 
3

3

= ∇

Z
1

|− |
2 · ̂
2

3

= ∇

Z ∞X
=0



+1

 ()2 · ̂ 

where we have put the polar axis for  along  Now

2 · ̂ = 2 · (̂ cos  + sin  (̂ cos+ ̂ sin))

Integration over  renders the − and −components zero.
Next we make use of the orthogonality of the  ()  noting that cos  =

1 ()  Only  = 1 survives the integration over  We obtain:

integral = 2∇

Z ∞
0



2

2

3
2 · ̂ 

=
4

3
∇2 · ̂

µZ 

0



2
+

Z ∞




2


¶
=

4

3
∇2 · ̂

µ
1

2
+ 1

¶
= 2∇

µ
2 · 



¶
And thus

2 =
2



2


− 2

4
2∇

µ
2 · 



¶
=

2



∙
2


− 1
2

µ
2


− 2 · 

2
̂

¶¸
=

2

2
[2 + (2 · ̂) ̂]

Then the interaction term for 2 particles (equation 6 with the  dropped) is:

1

Ã
2 −

1 · 2


!
= 1

µ
2


− 1


· 2

2
[2 + (2 · ̂) ̂]

¶
= 1

2



½
1− 1

22
[1 · 2 + (2 · ̂) (1 · ̂)]

¾
Adding this term to the kinetic energy (Lagrangian notes pg 5), we have the

Darwin Lagrangian for a collection of charged particles:

 = −1
2

X



2

r
1− 2

2
−
X






½
1− 1

22
[ ·  + ( · ̂) ( · ̂)]

¾
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To be consistent, we should evaluate the first term to second order in i.e.¡
1− 22

¢12 ' 1− 1
2
2

2
+ 1

2

¡−1
2

¢
4

24
 Finally, dropping the constant leading

term which is irrelevant, we have

 =
1

2

X



2
 +

1

82

X



4
 −

X






½
1− 1

22
[ ·  + ( · ̂) ( · ̂)]

¾
correct to second order in 
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