1 Lagrangian for a continuous system

Let’s start with an example from mechanics to get the big idea. The physical
system of interest is a string of length L. and mass per unit length p fixed at
both ends, and under tension 7. Choose x—axis along the unperturbed string,
and y—axis perpendicular to it. When the string is vibrating, its kinetic energy

is:
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To get the potential energy, we use the method of virtual work. The net force
on a string segment has components:
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Then the virtual work is
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Now integrate by parts, and make use of the fixed end condition:
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Then if F = —VV, then F -d§= —40V and V = —fﬁ-ds. Here
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The Lagrangian for the string is:
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is the Lagrangian density for the string.



The action is
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Taking the variation of the action, we get
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Integrating by parts gives:
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Thus for the action to be an extremum, we need
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Using equation (1), we find:
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which is the wave equation for the string.
An alternative approach is to write the string displacement as a sum over

normal modes:
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Then the Lagrangian density (1) is
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When we integrate over z, the only terms that survive are those with n =p
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The mode amplitudes y,, act as the generalized coordinates for the string. Then
Lagrange’s equations are
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and then the Lagrangian is
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which is the harmonic oscillator equation with frequency w,, = (n7/L) \/T/ .



2 Lagrangian for the electromagnetic field

Now we want to do a similar treatment for the EM field. We want a Lagrangian
density such that the action
S = / Ldx

is a Lorentz invariant, and where £ is a function of the fields. The "obvious"

invariant to try is
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(Recall this is proportional to E2 — B2, an "energy-like" thing.) Here the com-
ponents of the potential A%* are the "normal modes" — they behave like the y,
in the previous section. Then Lagrange’s equations (2) are:
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To evaluate this, note that
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So equations (4) become
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which are Maxwell’s equations in the absence of sources. We can fix up the
Lagrangian by adding the interaction term %JQAO‘. Thus
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With this Lagrangian density
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and Lagrange’s equations become
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or A
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which are the two Maxwell equations that include sources.

3 The Hamiltonian

Now we form the Hamiltonian. First let’s look at the string. Using equation

(3):
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where E,, is the total (kinetic plus potential) energy per mode. By analogy, we
get for the EM field system without sources
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This tensor is not symmetric, because the first term contains only one half of
the field tensor: BﬂAurather than F' B#The conservation laws require that the
energy tensor be symmetric, so we have to modify the result.

4 The energy-momentum tensor

Recall that the field energy density (non-relativistic) is 8% (E2 + B2)and the
Poynting theorem may be written
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We'd like to express this result in covariant form. We obviously need something
quadratic in the fields. For example:
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Now we’d like the (0,0) component to be the energy density. We can get that
if we add the tensor igO‘BF‘“’FW = %gaﬁ (B2 — E2) . Then
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which is part of equation (5). On the right hand side we need %; E= %JQFO‘O.
Thus we have the relation
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and so we guess that the full set of conservation laws are given by:
1
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I leave it to you to show that the 5 = ¢ components give momentum conservation
(Jackson equation 6.122).

5 Angular momentum

Cross products are not proper vectors. They are pseudo-vectors because they
do not transform properly under reflections. Thus it is usually better to express
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quantities such as angular momentum of a particle (L = r X p) as antisymmetric
tensors. For example the tensor
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has three independent compomemts: the components of the vector L.
Extending this idea, let’s look at the tensor
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The 3x3 spacelike part is the tensor M;; and thus represents the angular
momentum of the system. In addition:

M = Z (m’% — ctpi)

where ¢ is the energy of the particle. Conservation of angular momentum for
the system is expressed as M;; = constant. Thus we conjecture that the full
conservation law is M*? = constant. (Or equivalently d,M®? = 0) This gives
for the (7,0) component:
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The term on the left hand side is the position of the center of mass,
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while the term on the right hand side is the CM velocity times ¢.
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an eminently sensible result.
To get the equivalent result for the EM field we form the tensor
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and then the conservation laws should be given by:
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Taking 8 = 0 gives the CM motion as above.

6 The Darwin Lagrangian

The analysis above is for source-free fields. We might attempt to add the free-
particle Lagrangian to get a complete description of the particle-plus-field sys-
tem, but this approach fails because of retardation effects. (The fields propagate
at the speed of light.) We can calculate a complete Lagrangian in a single ref-
erence frame, inlcuding relativistic effects up to order 5% = (v/c)”.

Let’s start with a 2-particle system. Both particles produce fields and both
can move under the influence of those fields. The interaction term for charge 1
interacting with the fields due to 2 is
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If we now work in a single reference frame and use the coordinate time rather
than proper time as our time variable, we should drop the factor v. We want to
evaluate this expression to second order in v/c. If we work in Coulomb gauge,
the potential ¢y = g2/ is exact. We only need A to first order since it appears
in combination with v; /c. This means we can ignore retardation effects. Then:
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where the transverse current is
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Let’s look at the integral. First make a change of origin. Let @ = 7’ — Z5 and

with ¥ = ¥ — ¥y, we get
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where we have put the polar axis for @ along 7. Now
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Integration over ¢ renders the z— and y—components zero.
Next we make use of the orthogonality of the P, (u), noting that cosf =

Py (1) . Only I =1 survives the integration over y. We obtain:
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Then the interaction term for 2 particles (equation 6 with the « dropped) is:
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Adding this term to the kinetic energy (Lagrangian notes pg 5), we have the
Darwin Lagrangian for a collection of charged particles:
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To be consistent, we should evaluate the first term to second order in v/c,i.e.

(1 — 02/62)1/2 ~ 11— %Z—; + % (—%) % Finally, dropping the constant leading

term which is irrelevant, we have
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correct to second order in v/c.



