
A disk magnet of radius  and height   ¿  has uniform magnetizaton
 throughout its interior. Find the magnetic fields  and  .

We place our coordinate axes with the reference line for  along  so that
 =̂ As we have seen, (notes 1 equation 50) there is an effective magnetic

"surface charge density"  · ̂ at the surface of the magnet. In this case we

have

 =  · ̂ =̂ · ̂ = cos

at  =  The magnetic scalar potential is then given by (eqn 51, notes 1)
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The integral is nasty in the general case. Later in the semester we shall develop

tools that will allow us to find  everywhere. For now we will look at two

special cases.

1



Outside the magnet at a great distance away,  À  ≥ 0 and/or À   

we have
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Since either  or À   0

2 ' 2 + 2

which is independent of 0 Thus the 0 integration results in a multiplication
by  Doing the 0 integration, the first term integrates to zero. We expand

the cosine in the second term, and make use of the orthogonality of the trig

functions to get:
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With the magnetic moment  equal to  = 2̂ the potential is

Φ =
 · 
43

as expected for a dipole. The result is valid for  À  (Compare with eqns

33 and 49 in Notes 1). In this region  = 0
 because  is zero outside the

magnet.

Inside the magnet and near the axis, − 0 ¿  ¿  we may expand eqn

(1) in a different way. Letting 2 = ( − 0)2 + 2 and keeping terms up to

the square of  and  we have
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The first two terms give zero when we integate over 0, and the remainder are
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independent of 0 leaving

Φ ' 
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where again we used the orthogonality of the trig functions. The linear potential

gives a uniform field:

 = −∇Φ = −
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Note that  is opposite  The magnetic induction  is
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and is in the same direction as 

Because ∇ ·  = 0 the lines of  form closed loops. On the other hand, 

diverges from the positive and negative sources on the two sides of the magnet.

Thus  is opposite  in the interior. Although we obtained this result in a

special case, it is quite general.
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