_ A disk magnet of radius a and height h, h < a, has uniform magnetizaton
M throughout its interior. Find the magnetic fields B and H .

ref line for ¢

We place our coordinate axes with the reference line for ¢ along M, so that
M = Mz. As we have seen, (notes 1 equation 50) there is an effective magnetic

"surface charge density" M - 7 at the surface of the magnet. In this case we
have
oy=M-n=Mz-p= M cos¢

at p = a. The magnetic scalar potential is then given by (eqn 51, notes 1)
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The integral is nasty in the general case. Later in the semester we shall develop
tools that will allow us to find H everywhere. For now we will look at two
special cases.




Outside the magnet at a great distance away, z > h > 2/, and/or p > a > h,
we have
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Since either z or p > h > 2/,
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which is independent of z’. Thus the 2’ integration results in a multiplication
by h. Doing the ¢’ integration, the first term integrates to zero. We expand
the cosine in the second term, and make use of the orthogonality of the trig
functions to get:
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With the magnetic moment m equal to MV = ma®hM Z, the potential is
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as expected for a dipole. The result is valid for R > a. (Compare with eqns
33 and 49 in Notes 1). In this region B = uyH because M is zero outside the
magnet.

Inside the magnet and near the axis, z — 2 < a, p < a, we may expand eqn
(1) in a different way. Letting R? = (2 — z’)2 + p?, and keeping terms up to
the square of p/a and R/a, we have
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The first two terms give zero when we integate over ¢, and the remainder are
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independent of 2/, leaving
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where again we used the orthogonality of the trig functions. The linear potential
gives a uniform field:
- hM h

Fe Ve, M, by
v 4da 4da

Note that H is opposite M. The magnetic induction B is
B = iy ( +37) = pod (11
= ko = ko 1a

and is in the same direction as M.

Because V - B = 0, the lines of B form closed loops. On the other hand, H
diverges from the positive and negative sources on the two sides of the magnet.
Thus H is opposite B in the interior. Although we obtained this result in a
special case, it is quite general.



