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Diffraction occurswhen EM waves approach an aperture (or an obstacle) with dimension
d > X. We shdl refer to the region containing the source of the waves as region | and the
region containing the diffracted fields asregion I1. The total volume comprises both regions
I and Il. Region Il is bounded by a surface S = S; + Ss. The surface Ss is at “infinity”,
while Sy isascreen containing apertures, or else a set of obstecles.
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1 Kirchhoff’s method

We may write all the fieldsin the form
P oc et
and then ¢ satisfiesthe Helmholtz equation
(V2+ k%) =0



where k = w/c and ¢ is a component of E or B, or another variable describing the field,
such as acomponent of A. We can solve the Hd mholtz equation with the outgoing wave
Green’sfunction. Sincethere are no sourcesin region I1, the volume integral is zero.
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The integral reducesto an integrd over S, sincevy ~ 1/ R at co.
We can eval uate the integral using the Kirchhoff approximation:

1.+ and £ vanish on S, except in the openings, and

2. intheopenings, v and % areequal to the valuesin theincident field.

Strictly speaking, this is not a mathematically sound procedure, since if both ¢ and %7,%
vanish on any finite surface, then the solution 1) must be zero. Also the “solution” we obtan
does not yield the assumed values of 1) on S;. Ye the solution does a pretty good job of
reproducing experimental results.

We can partialy fix things up by using a better Green’s function. If ¢ is known (or
approximated) on S, we should use aDirichlet Green’s function, for which Gp (Z,7') = 0

for 7 on S;. Thenthe solution is:
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Similaly, if % is known or approximated on S7, we should use the Neumann Green’s
function, &£ = 0 on S;. Then
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If the screen S, is plane we can easily find the appropriate Green’s fundions using the

method of images:
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where R = 7 — & and R’ = Z — & and #" describes the paint that is the mirror image of
in S, and we let both points approach the surface S;. Then
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and thus equation (3) becomes:
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with z/ R = cos 6, while equaion (4) becomes
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Now to estimate the differences between these expressions, we choose a point source in
region | with coordinate 7 so that the wave from the source travelsin direction —¢y  to
reach the center of a small aperture at the origin. Then we canwrite
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wherery - it = cos (m — 0y) = —cosfy. Thenthe 3 expressionsfor ) may be written:
outgoing wave Greens function:
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Dirichlet Green’s function:
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and
Neumann Green’sfunction:
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If the aperture issmall compared with the distances r and r, then the factors cosd and
cos 0 are essentially constant throughout the range of integration. Then all 3 expressions
give the same diffraction pattern: the overdl intensity smplitude differs by small factors of
order 1. Thuswe can use whichever of the expressionsismost convenient.



2  Fraunhoffer and Fresnel diffraction

Thee exponential that appears in equation (2) may be approximated:
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The the exponent in the second term is of order:
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where d isthe dimension of the aperture, and its ratio to the first termis of order d/r.. The
exponent in the third term is of order

d2
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In Fraunhauffer diffractionweignore the thi rtherm. Thismeans that we need
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So we heed the observation point to be along way from the aperture.

If d/\ > 1, the third term may become important. Thisis the regime of Fresnel
diffraction. Fresnel diffraction occursfor

d
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Typically we find that Fresnel diffraction patterns are more complex than Fraunhoffer
patterns. Most of the problems in the text refer to the Fraunhoffer regime.

3 Vectorial diffraction theory

A more careful analysis requires tha we consider the vector nature of the fields. Thus
we replace equation (2) with the vector relation:
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First we rewrite the integrand as:
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And then we convert the surface integral of the second term to avolumeintegral. Recall that
the normal i’ is inward:
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since thereisno charge density on S,and
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Thus we have:
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Now we cantake G' = ¢**# / R and proceed as with the scelar theory. We can make the same
Kirchhoff approximations, and the same inconsistencies remain. For ' very large, we have
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Now if we choose S, to be alarge hemisphere of radiusr’ — oo, then #= —i’, and
VG = —iki'G

and theintegrd over Sy becomes:
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for outgoing waves, and thus:
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and so . . .
W x B=—i'x (ﬁ’xE) =B
on S,. Thustheintegral reducesto an integral over S;.
Now if our observaion poi nt P isvery distant from the sources on S;,then asin the

scalar theory we find G = -h ~ % exp (—z‘i& . i/) and we expect the diffracted fieldsto
have asimilar form .
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Then the amplitude of the diffracted field mgy be written:
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where the fields in the integral are also the diffracted fields. We know that F must be

perpendicular to k. Infact we can write the last two termsin theintegrand, likethefirst,in
theform k x o for some vector #. First note that
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and from Ampere’s|law:
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so thetermsin the integrand are:
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The integrand al so depends on ko if we use theinddent fieldsin the apertures.

4 Special case of plane conducting screen

Let the conducting screen be the z = 0 plane, with the incident fields propagating
toward the screen from negative z. We can decompose the total electric field into three parts:
the incident ﬁeld EO, thefield due to reflection by a solid conducting sheet, E“ and the
diffracted field £,. Then

E=Ey+E.+E;=FEq+E,



Thenin Regionll (z > 0) Eo + E,» =0.

The fields E, + E,; = E, areproduced by currentsin the conducting sheet:

J =Xty
The resulting vector potential is given by:
- Ams
(V24 5?) A=—]
C

and consequently A, = 0. Also, since the operator onthe LHS is even in z, and the right
hand side is zero except for z = 0, then Aisevenin z. Then
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isevenin z. Thuswe have
E,, E,, and B, areevenin z

and
E., B, and B, areoddin z
The fieldsthat are odd in z need not be zero at = = 0 where the conducting screen exists,
because of the surface charge density and currentsin the screen. But in the apertures, these
odd fields must be zero. Thus in the apertures, étangenﬁa. and Eoma arethe incident fields
alone
Now the mathematical problem that determines A is a Neumann problem, because

%—f = étangenu-a. is determined (through Ampere’s law) by the currents in the screen. Thus
we must use the Neumann Green’s function:
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A similar expression holds for A,, and thus
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Since 2 x B; = 0 in the aperture, theintegral is over the conducting material only. \We can
evduate the integral on either side of the screen. For z < 0, the normal becomes —z instead
of Z, thus confirming our expectations ebout the oddness of B

Now the source-free Maxwell equations areinvariant under the transformation B — E,



E — ,§7 S0 we can write a similar expression for El :
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Now if wewant the electric field for 2 < 0, we must change the sign in front of the integral
aswell asthesignin front of Z in order to obtain the correct symmetry. Since £, iszeroin
the aperture, we cannot simplify thisintegral asit stands. However:
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where E is the tota electric field, whose tangential component vanishes on the conducting
surface. Thusthefirstintegral is an integrd over the ioles alone. The second term
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where the field in the integrand is the total electric field in the aperture.  In practical
applications we can approximate by using the incident fields aswe have indicated previously.
Equation (8) is the vector Smythe-Kirchoff relation.

5 Babinet’s principle

Babinet’s prind ple rel ates the diffraction patterns due to 2 complementary screens S and
S¢. The complementary screen S.. has apertureswhere S issolid and vice-versa. Thus the
sum S + S, isasolid surface.

5.1  Scalar principle

For any complete closed surface we can write amathematical identity for any scalar function
1) : equation (1) or, using the outgoing wave Green’sfunction, equation (2) Thus:
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where as usual, theintegral over Sy vanishes. Thisresult isexact. Now, using the Kirchhoff

approximation, the integral over S, (the aperturesin S) gives thediffracted field ¢, in

region Il dueto the screen S. Similarly theintegral over S givesthe diffracted field ¢, due



to the complementary screen S.. Thus

Y=1,+ 1,
Now in directionswhere ) = 0,we have ¢, = —,, and thusthe diffraction pattern, which
depends on %, is the same. Thusfor example the diffraction pattern due to a hole of radius
a and dueto adisk of radius a are the same except “straight ahead”, where the incident field
is non-zero.

5.2 Vector principle

A more careful statement can be made for a plane conducting screen. First we define the
two situationsthat are complementary:

1. Theincident fields are E, 5, and the screen is S,.
2. Theincident fields are E. = B, B, = —E, and the complementary screen ...

Then we can use equation (8) to find the diffracted field in problem 1:
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For problem 2, we use equation (7):
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These two integrals are taken over the same surface. Since these two expressions are

mathematically identical, then
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in region 11. However the expression for B, gives the field due to the currentsin the sheet.
The total magnetic fieldinregion 2 is

ézta = éc + ég = fEO + El.
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The intensity of the radiation is given by ’E’ or equivalently ‘B’ . Thus the diffraction

pattern isthe same for both screenswherever Ej is zero.
A similar analysis showsthat
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where here again él is thefield due to the sheet alone, and the minus sign appears so that
both waves are outgoing. Thus
él,tot = éo +§1 = éo - 52
= kox Ey— E,
whichleadsto the same prediction with regard to the diffraction pattern.

Babinet’s principleisused in the design of microwave antennae. A dot in aconducting
plate radiates the same pattern as a metal strip. Thus slots in wave-guides can serve as



effective microwave radiatiors.
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