
Jackson notes 2020

Dielectrics
When an electric field is applied to a non-conducting medium, the charge

distributions in the individual molecules are distorted, giving rise to a dipole
moment �pi associated with each molecule of type i. Some materials have mole-
cular dipoles even when no field is applied. In these materials the electric field
aligns the dipoles parallel to �E ("sphermult" notes page 12.) Then the electric
polarization (dipole moment per unit volume) is

�P (�x) =
i

ni (�x) �pi

where ni is the number density of molecules of type i. The electric potential
contributed by these dipoles is (sphermult notes eqn 9)

Φ (�x)dipoles =
1

4πε0

�P (�x3) · (�x− �x3)
|�x− �x3|3 d3x3

We can perform some of the usual tricks on the integral.

Φ (�x)dipoles =
1

4πε0 all space

�P · �∇3 1

|�x− �x3|d
3x3

=
1

4πε0
�∇3 ·

�P

|�x− �x3| −
�∇3 · �P
|�x− �x3| d3x3

=
1

4πε0 S∞

�P

|�x− �x3| · n̂
3dA3 −

�∇3 · �P
|�x− �x3|d

3x3

=
1

4πε0
−

�∇3 · �P
|�x− �x3|d

3x3

since �P = 0 on the surface at infinity. Compare this result with eqn (29) in
Notes 1. The divergence of �P acts as a "bound" charge density

ρB = −�∇ · �P (1)

in producing potential.
The total potential due to (free) charge density ρ plus bound dipoles may

be written:

Φ (�x) =
1

4πε0 all space

ρ (�x3)− �∇3 · �P
|�x− �x3| d3x3

We may write this result in differential form as

�∇ · �E = 1

ε0
ρ (�x)− �∇ · �P (2)
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If the medium is uniform, in most cases �∇ · �P = 0 except at boundaries.
Defining the electric displacement

�D ≡ ε0 �E + �P (3)

equation (2) becomes
�∇ · �D = ρ (�x) (4)

Since this equation contains only the free charge density ρ, we do not have to
concern ourselves with the distribution of �P.
If the response of the medium is linear and isotropic, then

�P = ε0χ�E (5)

where χ is the electric susceptibility of the medium. Then

�D = ε0 �E (1 + χ) = ε �E (6)

where ε/ε0 = 1 + χ is the dielectric constant of the medium.
If the medium is not isotropic, (χ depends on the direction of �E,) this equa-

tion (6) is replaced by the tensor relationship

Di = εijEj

(See Jackson problem 7.16 for example. Also see
http://www.physics.sfsu.edu/~lea/courses/grad/plasmawavesi.PDF section

2.)

Boundary value problems with dielectrics

1. Method of images
A point charge Q is placed in a uniform medium of dielectric constant κ1 =

ε1/ε0, at a distance d from a plane boundary with a medium of dielectric con-
stant κ2 = ε2/ε0. We want to find the electric field everywhere.
First note that we may place “image" charges outside medium 1 and still

satisfy the differential equation

�∇ · �D1 = ε1�∇ · �E1 = −ε1∇2Φ1 = −Qδ (�x− �x1)

in medium 1. Similarly, we may put “image" charges outside medium 2 and
still satisfy the differential equation

�∇ · �D2 = ε2�∇ · �E2 = −ε2∇2Φ2 = 0
in medium 2. We can use these images to satisfy the boundary conditions, just
as we did with conductors (notes 3 §1.1).
We place the z−axis along the line joining the two charges, with origin on

the boundary. The system has rotational symmetry about this line, so all image
charges must lie on the z−axis. Using our experience with conductors as a guide,
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we guess that the image to the left of the boundary is a charge Q∗ the same
distance d from the boundary as Q. The potential in medium 1 is computed
assuming that medium 1 extends to the left of the boundary.

We use cylindrical coordinates (ρ,φ, z), so

Φ1(z > 0) =
1

4πε1

Q

R1
+
Q∗

R2

where
R21 = (z − d)2 + ρ2

and
R22 = (z + d)

2 + ρ2

Similarly, when computing the fields in medium 2, we use a charge Q∗∗, located
to the right of the boundary and at distance d from it:

Then the potential in medium 2 is computed as if medium 2 extends to the right
of the boundary:

Φ2 (z < 0) =
1

4πε2

Q∗∗

R1
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Now we calculate the fields and apply the boundary conditions. For z > 0,

�E1 = −�∇Φ1
=

1

4πε1

Q

R31
(ρ ρ̂+ (z − d) ẑ) + Q

∗

R32
(ρ ρ̂+ (z + d) ẑ)

and for z < 0
�E2 =

1

4πε2

Q∗∗

R31
(ρ ρ̂+ (z − d) ẑ)

At the boundary z = 0, R1 = R2, and normal �D and tangential �E are continuous
(Notes 1 eqns 10 and 15 with zero free charge density at the boundary). The
normal component of �D is Dz, so

Q−Q∗ = Q∗∗

and the tangential component of �E is Eρ, so

Q+Q∗

ε1
=
Q∗∗

ε2

Thus
Q−Q∗ = ε2

ε1
(Q+Q∗)

so
Q∗ = Q

ε1 − ε2
ε1 + ε2

and

Q∗∗ = Q 1− ε1 − ε2
ε1 + ε2

= Q
2ε2

ε1 + ε2

Note that Q∗ → −Q as ε2 → ∞, the conductor limit. Also Q∗ → 0 and
Q∗∗ → Q as ε2 → ε1, as expected.
With these values, the fields are:

�E1 =
Q

4πε1

ρρ̂+ (z − d) ẑ
R31

+
ε1 − ε2
ε1 + ε2

ρρ̂+ (z + d) ẑ

R32

=
Q

4πε1
�ρ

1

R31
+
(ε1 − ε2)

(ε1 + ε2)

1

R32
+

z − d
R31

+
(ε1 − ε2)

(ε1 + ε2)

(z + d)

R32
ẑ

and

�E2 =
Q

4πε2

2ε2
ε1 + ε2

ρρ̂+ (z − d) ẑ
R31

=
Q

2π

1

ε1 + ε2

ρρ̂+ (z − d) ẑ
R31

Thus the field in medium 2 looks like that due to a charge Q in a uniform
medium with the average dielectric constant. Both results are correct in the
limit ε2 = ε1.
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Plot of the equipotentials for ε2 = 2ε1, All distances are scaled by d. The
scaled potential is U = 4πε1Φd/Q. U = 1/3 (black line) U = 1/2 (blue line)
U = 2/3 (red line)

2. Dielectric sphere in a uniform field
We use spherical coordinates with origin at the center of the sphere, and

put the polar axis along the direction of the uniform field �E0, which is the only
direction singled out in the system.

The system is rotationally symmetric about this axis, and the only place where
there is any net charge density (free or bound) is on the surface of the sphere.
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There is also charge at infinity to produce the uniform field �E0. Thus, inside the
sphere, the potential satisfies Laplace’s equation and has the form

Φin =
∞

l=0

Alr
lPl (µ)

The terms in r−l−1 have been excluded because we expect the potential to be
finite at the origin. Outside the sphere

Φout = −E0r cos θ +
∞

l=0

BlPl (µ)

rl+1

The first term in Φout describes the uniform field at infinity1. All other terms in
the potential (which are due to the bound surface charge density on the sphere)
should go to zero as r → ∞, so we excluded additional positive powers of r.
Applying the boundary conditions at r = a:
Normal (radial) component of �D is continuous:

Dr = −ε∂Φ
∂r

− ε

ε0

∞

l=0

lAla
l−1Pl (µ) = E0 cos θ +

∞

l=0

(l+ 1)
BlPl (µ)

al+2
(7)

Tangential �E (or, equivalently, potential) is continuous.

Eθ = −1
r

∂Φ

∂θ

We may use the µ derivative rather than θ.

∞

l=0

Ala
l−1P 3l (µ) = −E0 +

∞

l=0

BlP
3
l (µ)

al+2
(8)

Using orthogonality of the Legendre polynomials Pl, we may equate each term
in the sum in equation (7)

ε

ε0
lAla

l−1 = − (l+ 1) Bl
al+2

l > 1

ε

ε0
A1 = −E0 − 2B1

a3
l = 1

0 = B0 l = 0

Interestingly, the P 3l are also orthogonal (see Lea Ch 8 probs 4 and 5). Thus
we may also equate each term in the sum in equation (8):

Ala
l−1P 3l (µ) =

BlP
3
l (µ)

al+2
l > 1

A1 = −E0 + B1
a3

l = 1

1We did something very similar when computing current flow. See currentflow notes pg 2.
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(Note: we could get the same result from continuity of the potential.) For l > 1,
the only possible solution2 is Al = Bl ≡ 0, while for l = 1 :

−E0 − 2B1
a3

=
ε

ε0
−E0 + B1

a3

B1 = E0a
3 ε− ε0
ε+ 2ε0

and then

A1 = −E0 +E0 ε− ε0
ε+ 2ε0

= −3 ε0E0
ε+ 2ε0

We have not found A0. Continuity of the potential requires that it be zero.
Thus

Φin = − 3ε0E0
ε+ 2ε0

r cos θ = − 3ε0E0
ε+ 2ε0

z

and

Φout = −E0r cos θ +E0a3 ε− ε0
ε+ 2ε0

cos θ

r2

The field inside the sphere is uniform:

�Ein = E0
3ε0

ε+ 2ε0
ẑ

and outside it is a superposition of the uniform field at infinity and a dipole
field ("sphermult" notes eqn 9). The dipole moment is found from

1

4πε0

�p · �r
r3

= E0a
3 ε− ε0
ε+ 2ε0

cos θ

r2

so that
�p = 4πε0 �E0a

3 ε− ε0
ε+ 2ε0

=
4π

3
a3 �P

where the polarization is

�P =
3ε0 (ε− ε0)

ε+ 2ε0
�E0 = (ε− ε0) �Ein = ε0χ�Ein

as expected. Since �∇ · �P = 0 inside the sphere, all the bound charge density is
on the surface, as predicted.
Notice that these results have the right limits in the cases ε→ ε0 (no sphere)

and ε→∞ (conducting sphere). If ε > ε0 (the case for most ordinary materi-
als), Ein < E0. The results are important in computing scattering of radiation
by small spheres.

2We have seen this result before. See current flow notes page 3.
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Energy

For a linear medium, the electric energy is given by (Notes 2 eqn 5)

U =
1

2
�E · �D dV (9)

It is interesting to consider what happens when we change the properties of
the medium, for example, if we introduce a dielectric where intially there was
vacuum.
First let us consider the case of fixed sources. That is, the free charge

density function ρ0 (�x) remains unchanged. The initial energy is

U0 =
1

2
�E0 · �D0 dV

and after introducing the dielectric, the fields change and

Uf =
1

2
�E · �D dV

The change in energy is thus

∆U =
1

2
�E · �D − �E0 · �D0 dV (10)

It seems obvious that the difference in energy is associated with the polarization
of the medium, so let’s see how. First we rewrite the integrand as follows:

�E · �D − �E0 · �D0 = �E + �E0 · �D− �D0 + �E · �D0 − �E0 · �D (11)

Next we show that the integral of the first term is zero. The initial and final
states are time independent, so �∇ × �E = �∇ × �E0 = 0, and we may write
�E + �E0 = −�∇Ψ for some scalar function Ψ. Then the integral of the first term
in (11) is

I1 =
V

�E + �E0 · �D− �D0 dV = −
V

�∇Ψ · �D − �D0 dV

= −
V

�∇ · Ψ �D− �D0 dV −
V

Ψ�∇ · �D− �D0 dV

= −
S∞
Ψ �D − �D0 · n̂ dA− 0

where we used the divergence theorem in the first term and the fact that �∇· �D =
�∇ · �D0 = ρ0 in the second term. Now we argue that the surface integral is zero
for all the usual reasons.
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We have now reduced the change in energy (10) to

∆U =
1

2
�E · �D0 − �E0 · �D dV

=
1

2
�E · ε0 �E0 − �E0 · ε0 �E + �P dV (equation 3)

= −1
2 V1

�P · �E0 dV (12)

where the integral is now over the volume V1 containing the dielectric, where
ε 9= ε0 and �P 9= 0.
The result is not surprising since we have already found the energy of a

dipole in an external field to be −�p · �E (multipole notes eqn 23). The factor
1/2 is the usual factor that avoids double-counting.
Equation (12) shows that the energy is reduced when �P is parallel to �E0 —

the usual case for ordinary materials. The stored energy is reduced because the
fields do work to create and/or align the dipoles. This means that a dielectric
object will be drawn toward regions of higher field. (See eg LB example 27.9
with the battery disconnected.)
Now let’s consider the forces acting. If a dielectric body undergoes a dis-

placement δξ with a corresponding change in energy δU, and the sources of the
fields (the charges) are kept fixed, then the system is isolated, and the work
done by the system reduces its energy,

δU = −�F · d�ξ = −Fξdξ
Then the ξ−component of the force exerted on the body by the fields is

Fξ = − ∂U

∂ξ Q

(13)

where the derivative is taken at constant Q. This result is of a familar form.
Often we find that potentials are kept fixed (the battery is kept connected

in LB Example 27.9), and the battery acts as a source or sink of charge, and
also of energy. In this case the system is not isolated. So we have to compute
the energy changes and forces resulting in two steps.
We go back to the fundamental relation (704notes_2 eqn 3)

U =
1

2
ρ (�x)Φ (�x) dV, (14)

where ρ is the free charge density, to compute the change in energy.
Then the change in energy is

δU =
1

2
[δρ (�x)Φ (�x) + ρ (�x) δΦ (�x)] dV

where the integral is over the conductors, because there is no free charge in the
dielectric.
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1. The conducting surfaces (labelled with n) are disconnected from the bat-
teries, and then the total charge on each must remain fixed. Since each
conductor is an equipotential, it does not matter if the charge distribution
on each changes. We change the dielectric properties of the system to get
an energy change δU1 where

δU1 =
n

1

2
δΦ1,nqn =

1

2
ρ (�x) δΦ1 (�x) dV

2. The batteries are reconnected, allowing charge to flow on or off the con-
ductors, with a consequent energy flow. The potentials return to their
original values

δΦ2 = −δΦ1
and the energy change is

δU2 =
1

2
[δρ (�x)Φ (�x) + ρ (�x) δΦ2 (�x)] dV

In this step we are not changing the dielectric properties of the system at
all. Thus δΦ ∝ δρ (notes 1 eqn 29) and the two terms are equal, so we
may also write

δU2 = ρ (�x) δΦ2 (�x) dV

= − ρ (�x) δΦ1 (�x) dV = −2δU1

Thus the total energy change is

δU1 + δU2 = −δU1,
the opposite of the previous value. The force exerted on the dielectric in
a given state is the same no matter how the system came to be in that
state, so in this case

Fξ = +
∂U

∂ξ V

(15)

Compare with (13).

We can understand this result once again by thinking about a simple
system. If a dielectric slab is inserted into a parallel plate capacitor, the
force on the slab draws it in, whether or not the battery is connected. You
can see this from a simple picture of the fields and charges. However, the
energy stored increases if the battery is connected but decreases if it is
not.
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