
Physics 704 Notes Sp 2020

1 Current Flow Problems
The current density �j satisfies the charge conservation equation (notes 1 eqn 7)

∂ρ

∂t
+ �∇ ·�j = 0 (1)

and thus in a steady state, �j is solenoidal:

�∇ ·�j = 0 (2)

In a conducting medium, we may relate �j to the electric field through the con-
ductivity σ :

�j = σ �E = −σ�∇Φ
At a boundary between two different media, integration of equation (2) over

a pillbox straddling the boundary, as in notes _1 page 5, gives

�j · n̂ is continuous across the boundary (3)

and continuity of tangential �E also gives

t̂ · �∇Φ is continuous across the boundary

which in most cases is equivalent to1

Φ is continuous across the boundary (4)

Notice that the boundary condition on normal �j (3) implies that Enorm is
NOT continuous, and thus there must be charge on the boundary (Notes _1
eqn 11). This charge is the source of the fields that direct the current flow.

1.1 Example

An infinite, plane, conducting sheet with conductivity σ1 contains a circular
region of a different metal with conductivity σ2 and radius a. Current enters
the sheet at x = −∞ flowing in the positive x−direction

�j (x→−∞) = j0x̂

Find the pattern of current flow in the sheet.

1 See Jackson §1.6 for a discussion of cases where Φ is not continuous.

1



First note that if σ1 < σ2, we expect current to flow inwards through the
more conducting circular region, but if σ1 > σ2,we expect current to flow around
the more resistive "obstacle" (current follows the path of least resistance).
In both of the regions ρ > a and ρ < a (but not at ρ = a because of the

charge there) the potential satisfies Laplace’s equation, and thus the solution is
of the form (Jackson eqn 2.69, page 76, notes3half pg 9). In the inner region we
exclude the logarithmic term and the negative powers of ρ because they diverge
at the origin.

Φ2 (ρ < a) =
∞

m=1

ρm (cm cosmφ+ bm sinmφ)

In the outer region, we need a uniform electric field �E0 = �j0/σ1 in the x−direction
to drive the current at infinity. The potential −j0x/σ1 = − j0

σ1
ρ cosφ describes

this field. This corresponds to the m = 1 term in the potential. We exclude
the logarithmic term and the other positive powers of ρ because they diverge at
infinity. Thus

Φ1 (ρ > a) = −j0ρ cosφ
σ1

+
∞

m=1

ρ−m (dm cosmφ+ em sinmφ)

The sum in this expression represents the potential due to the charge on the
boundary at ρ = a.
Next we apply the boundary conditions at ρ = a.
Continuity of Φ :

∞

m=1

am (cm cosmφ+ bm sinmφ) = −j0a cosφ
σ1

+
∞

m=1

a−m (dm cosmφ+ em sinmφ)

Making use of the orthogonality of the cosines and sines, we may equate term
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by term to get

amcm = a−mdm m > 1 (5)

ac1 = −j0a
σ1

+
d1
a

(6)

and
ambm = a

−mem (7)

Continuity of jn = jρ = σEρ = −σ∂Φ/∂ρ :

−σ2
∞

m=1

mam−1 (cm cosmφ+ bm sinmφ) = j0 cosφ+σ1

∞

m=1

ma−m−1 (dm cosmφ+ em sinmφ)

Using orthogonality of the trig functions, we have:

−σ2mam−1cm = σ1ma
−m−1dm m > 1 (8)

−σ2c1 = j0 + σ1a
−2d1 m = 1 (9)

and
−σ2mam−1bm = σ1ma

−m−1em (10)

The only solution to equations (5) and (8) is cm = dm = 0, m > 1. Similarly,
from equations (7) and (10), bm = em = 0. We should have expected this result
because the input to the system (the current at infinity) is an m = 1 mode.
The remaining equations (6) and (9) give

−σ2c1 = −σ2 − j0
σ1
+
d1
a2

= j0 + σ1
d1
a2

σ2
j0
σ1
− j0 = σ2

d1
a2
+ σ1

d1
a2

So

d1 =
j0a2

σ1

(σ2 − σ1)

σ2 + σ1
(11)

and then from (6),

c1 = − j0
σ1
+
d1
a2
= − j0

σ1
+
j0
σ1

(σ2 − σ1)

σ2 + σ1

= − 2j0
σ2 + σ1

Thus the potential is

Φ2 (ρ < a) = − 2j0
σ2 + σ1

ρ cosφ = − 2j0
σ2 + σ1

x

and

Φ1 (ρ > a) = −j0ρ cosφ
σ1

+
a2

ρ

j0
σ1

(σ2 − σ1)

σ2 + σ1
cosφ
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The current is given by

�j = −σ�∇Φ = 2σ2
σ2 + σ1

j0x̂ ρ < a

= j0x̂+ j0
(σ2 − σ1)

σ2 + σ1

a2

ρ2
ρ̂ cosφ+ φ̂ sinφ ρ > a

The current for ρ < a is uniform, and �j is > j0 if σ2 > σ1 but < j0 if σ2 < σ1,

as expected. Outside the circle, (ρ > a) and for cosφ positive (positive x, i.e.
to the right of the circle), jρ is positive if σ2 > σ1. Thus current lines converge
inward to the circle for negative x and move back outward for positive x. Again
this is what we expected.

1.2 Plotting the flow lines.

Remember that we can use a complex potential for 2-D problems (Lea §2.4,
notes3half section 2), χ = Φ+ iψ, and the imaginary part ψ = constant gives us
the field lines. Here there is an extra subtlety because �j = −σ�∇Φ, so σψ gives
the current flow lines. We have, with r = ρ/a, and a

ρ cosφ = Re 1/ re
iφ =

Re (1/z)

χ = Φ+ iψ = −j0a
σ1

2σ1
σ2+σ1

z if r < 1

z − 1
z
(σ2−σ1)
σ2+σ1

if r > 1
(12)

where
1

z
=

1

reiφ
=
1

r
e−iφ =

1

r
(cosφ− i sinφ)

and thus, taking the imaginary part of (12), we have

σψ = −j0a
2σ2

σ2+σ1
r sinφ if r < 1

r sinφ 1 + 1
r2
(σ2−σ1)
σ2+σ1

if r > 1

If σ2 → 0 no current flows through the circle and we retrieve the solution in Lea
Ch2 §2.4.4 for fluid flow around a cylinder. If σ2 → σ1, we retrieve the expected
undeviated current flow. For r < 1,

yin = r sinφ =
−ψσ2
j0a

σ2 + σ1
2σ2

So, since |yin | < 1, values of

k =
−ψσ
j0a

<
2σ2

σ2 + σ1
= kmax

correspond to current flow lines that pass through the circle. The corresponding
value outside the circle is

yout = r sinφ =
k

1 + 1
r2
(σ2−σ1)
σ2+σ1

=
yin

1 + 1
r2
(σ2−σ1)
σ2+σ1

2σ2
σ2 + σ1
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Thus
yout
yin
→ 2σ2

σ2 + σ1
as r→∞

and this ratio is > 1 if σ2 > σ1, as expected.
Plot for σ2/σ1 = 2

k =
4
3r sinφ if r < 1

r sinφ 1 + 1
3r2 if r > 1

Thus the flow lines are given by:

r (φ) =
3

4

k

sinφ
r < 1

=
3k + 9k2 − 12 sin2 φ

6 sinφ
r > 1
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The line charge density at the circular boundary may be found from the
normal component of E. If t is the thickness of the sheet, then

(Eρ1 −Eρ2)|ρ=a =
λ

ε0t

=
j0 cosφ

σ1
+
j0
σ1

(σ2 − σ1)

σ2 + σ1
cosφ− 2j0

σ2 + σ1
cosφ

=
j0 cosφ

σ1 (σ2 + σ1)
(σ2 + σ1 + σ2 − σ1 − 2σ1)

λ = t
2j0ε0 cosφ

σ1

σ2 − σ1
σ2 + σ1

Check the dimensions! λ is zero at the top and bottom of the cylinder where �j
is tangent to the circle, and is zero everywhere if σ2 = σ1. When the uniform
field is turned on, it takes a very short time (∼ a/c) for the current flow to build
up this charge at the boundary, at which point a steady state is achieved.
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