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1 Wave propagation
As usual, we start with Maxwell’s equations with no free charges:

�∇ · �D = 0
�∇ · �B = 0

�∇× �E = −∂
�B

∂t

�∇× �H =
∂ �D

∂t
+�j

If we now assume that each field has the plane wave form �E = �E0e
i(�k·�x−ωt) (or equivalently,

we Fourier transform everything), the equations simplify:
�k · �D = 0 (1)

�k · �B = 0 (2)

�k × �E = ω �B (3)

i�k × �H = −iω �D+�j (4)
Then, for an LIH, conducting medium, we can eliminate �D = ε�E, �H = �B/µ and �j = σ �E
to get:

ε�k · �E = 0
�k × �B = −ωµε�E − iµσ �E = −ωµε

�
1 + i

σ

ωε

�
�E (5)

For now let’s take σ = 0 (non-conducting medium). Then we get the wave equation:

�k ×
�
�k × �B

�
= �k

�
�k · �B

�
− k2 �B = −ωµε�k × �E

k2 �B = ω2µε �B (6)
where we used equation (2). So the wave phase speed is

vφ =
ω

k
=

1√
µε
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and the refractive index is:
n =

c

vφ
=

u
µε

µ0ε0
(7)

and
k =

ω

c
n (8)

Then equation (3) becomes:
nk̂ × �E = c �B (9)

For most LIH materials in which �B = µ �H is a useful relation, µ * µ0, so the refractive
index is primarily determined by the dielectric constant ε/ε0.

2 Reflection and transmission of waves at a boundary
Now let’s consider a wave incident on a plane boundary between two media with

refractive indices n1 and n2.We choose coordinates so that the boundary is the x−y−plane.
The field in the incident wave is

�E = �Ei exp
�
i�ki · �x− iωt

�
(10)

In general there will be a transmitted wave with
�E = �Et exp

�
i�kt · �x− iωtt

�
(11)

and a reflected wave with
�E = �Er exp

�
i�kr · �x− iωrt

�
(12)

The plane of incidence is the plane containing the normal to the boundary and the incident
ray, that is n̂ and �ki. We choose the axes so that the plane of incidence is the x− z−plane.
The angle of incidence θ is the angle between �ki and n̂ = ẑ. (See Figure 1 in section 2.1.)
Then

�ki · �x = ki (x sin θ + z cos θ) (13)
The boundary conditions we have to satisfy are (Notes 1 equations 10, 12, 13 and 15 with
σf and �Kf zero).

n̂ · �D = Dz is continuous (14)

n̂ · �B = Bz is continuous (15)

�Etan is continuous (16)

�Htan is continuous (17)
For most ordinary materials µ/µ0 * 1, so we shall ignore the difference between �B and
µ0 �H.
In order to satisfy the boundary conditions at z = 0 for all times t and at all x and y, we

must have (eqn 13) �k · �x− ωt = kx sin θ − ωt the same for each wave. That is, each wave
has the same frequency ω and kx = k sin θ is the same for each wave. From (eqn 8) with
fixed ω, we also have kr = ki and kt = n2

n1
ki . So the angle of incidence equals the angle of

reflection, and
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ki sin θ = kt sin θt =
n2
n1
ki sin θt

or
n1 sin θ = n2 sin θt (18)

which is Snell’s law.
Notice that the physical argument that gives the laws of reflection and refraction

(boundary conditions must hold for all time and everywhere on the boundary) is independent
of the kind of wave and the specific form of the boundary conditions, and so these laws hold
for waves of all kinds (sound waves, seismic waves, surface water waves, etc.).
We now have four equations to solve for the unknowns �Er and �Et. However, two of the

equations (16 and 17) are vector equations with two components, so we actually have six
equations. Since we know the directions of the wave vectors �k, and �E is perpendicular to
�k, there are two components of �Er and �Et in the plane perpendicular to their respective �k,
so we have four unknowns. Our equations are not all independent. We can simplify by
decomposing the incident light into two specific linear polarizations.

2.1 Polarization perpendicular to the plane of incidence

In this polarization, �E is perpendicular to the plane of incidence, (that is, with our chosen
coordinates, �E = Eyŷ). The vectors �E and �B in the waves are as shown in the diagram.
The direction of �B is chosen so that �S, the Poynting vector, is in the correct direction for
each wave.

Figure 1

In this case there are only two unknowns, Et and Er, but the boundary condition (14) is
trivially satisfied, sinceDz = 0. The remaining conditions cannot all be independent. Eqn.
(16) has only one non-zero component:

Ei +Er = Et (19)
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The exponentials in the expressions for the fields in eqns (14 - 17) cancel. Similarly from
(17) we have:

Bxi +Bxr = Bxt
and from equation (9) we find cBx = −nk̂zEy, so we may rewrite this equation in terms of
the electric field components.

n1 (Ei −Er) cos θ = n2Et cos θt = n2 (Ei +Er) cos θt (20)
where we used equation (19) in the last step. The final boundary condition is (15):

Bzi +Bzr = Bzt

n1 (Ei +Er) sin θ = n2Et sin θt

where we used Bz = nk̂xEy/c.With Snell’s law, this relation duplicates eqn (19), so we
have two equations for two unknowns. Rearranging eqn (20), we get

Ei (n1 cos θ − n2 cos θt) = Er (n1 cos θ + n2 cos θt)
Solving for Er, and using Snell’s law to eliminate θt, we have

Er =
n1 cos θ − n2 cos θt
n1 cos θ+ n2 cos θt

Ei

=
n1 cos θ − n2

u
1−

�
n1
n2

�2
sin2 θ

n1 cos θ+ n2

u
1−

�
n1
n2

�2
sin2 θ

Ei

Er =
n1 cos θ −

t
n22 − n21 sin2 θ

n1 cos θ+
t
n22 − n21 sin2 θ

Ei (21)

The reflected amplitude depends on the angle of incidence, and on the ratio of the two
refractive indices. From equation (21) we can conclude that Er has the opposite sign from
Ei if n2 > n1, independent of the angle θ. If n2 > n1,

1−
�
n1
n2

�2
sin2 θ > 1− sin2 θ = cos2 θ

n2

v
1−

�
n1
n2

�2
sin2 θ > n1 cos θ

Thus the reflected wave has a phase change of π if n2 > n1, as we learn in elementary
optics.
Finally from equation (19), we find the transmitted amplitude:

Et = Ei
2n1 cos θ

n1 cos θ +
t
n22 − n21 sin2 θ

(22)

The time-averaged power transmitted is given by (eqn 9 and waveguide notes eqn 30 )

< �S > =
1

2
Re
�
�E × �H∗

�
=
1

2
Re

�
�E × ( n

cµ0
k̂ × �E∗)

�
= k̂

n

2cµ0
|E|2

Thus the sum of power transmitted normally across the boundary plus power reflected
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normally is

< �Sr · n̂ > + < �St · n̂ > =
n1
2cµ0

|Er|2 cos θ + n2
2cµ0

|Et|2 cos θt

=
|Ei|2
2cµ0

n1
n1 cos θ −

t
n22 − n21 sin2 θ

n1 cos θ +
t
n22 − n21 sin2 θ

2 cos θ
+n2

 2n1 cos θ

n1 cos θ +
t
n22 − n21 sin2 θ

2
t
n22 − n21 sin2 θ

n2


=

|Ei|2
2cµ0

n1 cos θ
n21 cos

2 θ + 2n1 cos θ
t
n22 − n21 sin2 θ + n22 − n21 sin2 θ�

n1 cos θ +
t
n22 − n21 sin2 θ

�2
=

|Ei|2
2cµ0

n1 cos θ = < �Si · n̂ > as expected!

2.2 Polarization parallel to the plane of incidence

The �E and �B fields in this polarization look like this:

Figure 2
and boundary condition (15) is trivially satisfied. Boundary condition (17) with
µ1 = µ2 = µ0 together with eqn (9) gives

Bi +Br = Bt

n1 (Ei +Er) = n2Et (23)
Then (16) together with Snells’ law gives:

(Ei −Er) cos θ = Et cos θt = n1
n2
(Ei +Er)

v
1−

�
n1
n2

�2
sin2 θ (24)
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The final boundary condition (14) is
ε1 (Ei +Er) sin θ = ε2Et sin θt

and, since ε1 ∝ n21 (eqn 7), this duplicates eqn (23).
Eqn (24) gives Er:

Ei

cos θ − n1
n2

v
1−

�
n1
n2

�2
sin2 θ

 = Er

cos θ + n1
n2

v
1−

�
n1
n2

�2
sin2 θ


So

Er = Ei

cos θ − n1
n2

u
1−

�
n1
n2

�2
sin2 θ

cos θ + n1
n2

u
1−

�
n1
n2

�2
sin2 θ

= Ei
n22 cos θ − n1

t
n22 − n21 sin2 θ

n22 cos θ + n1

t
n22 − n21 sin2 θ

(25)

and then from (23):

Et =
n1
n2
Ei

2n22 cos θ

n22 cos θ + n1

t
n22 − n21 sin2 θ

= Ei
2n1n2 cos θ

n22 cos θ+ n1

t
n22 − n21 sin2 θ

(26)

2.3 Polarization by reflection

Since the reflected amplitudes (25) and (21) are not the same in the two different
polarizations, the reflected light is always partially polarized when the incident light is
unpolarized. Equation (25) shows that the reflected amplitude in the polarization parallel to
the plane of incidence is zero if:

n22 cos θ − n1
t
n22 − n21 sin2 θ = 0

or, squaring and writing 1 = cos2 θ+ sin2 θ, we have
n42 cos

2 θ = n21
�
n22
�
cos2 θ + sin2 θ

�− n21 sin2 θ�
n22 cos

2 θ
�
n22 − n21

�
= n21 sin

2 θ
�
n22 − n21

�
Thus either n1 = n2 (no boundary), or

tan θ =
n2
n1

(27)

This is Brewster’s angle.
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Can this also happen for the other polarization? We would need:

n1 cos θ −
t
n22 − n21 sin2 θ = 0

n21 cos
2 θ = n22 − n21 sin2 θ

or n2 = n1. So the reflected field amplitude for this polarization is not zero unless there is
no boundary. Thus when unpolarized light is incident at Brewster’s angle, the reflected light
is 100% polarized perpendicular to the plane of incidence. At other angles of incidence, the
reflected light is partially polarized.
Why does this happen? At Brewster’s angle,

sin θt =
n1
n2
sin θi =

sin θi
tan θi

= cos θi

Thus
θt =

π

2
− θi

Figure 3
The angle between the reflected and transmitted waves is

χ =
π

2
− θt +

π

2
− θi =

π

2
− θt + θt =

π

2
Thus electrons accelerated by the electric field in medium 2 would need to radiate along
the direction of the acceleration in order to create the reflected wave. This is impossible.
(wavemks notes, see eg eqn 38.)
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3 Waves in a Conducting medium

3.1 Propagation

If the medium is a conductor, (non-zero σ in eqn (5)), the dispersion relation (6) becomes:

k2 = ω2µε
�
1 + i

σ

ωε

�
(28)

and thus the solution for k is complex.
k = |k| eiφ = |k| (cosφ+ i sinφ) = κ+ iγ

where

|k|2 = ω2µε

u
1 +

� σ

ωε

�2
(29)

tan2φ =
σ

ωε
(30)

Then
ei
�k·�x = eiκk̂·�xe−γk̂·�x

The imaginary part γ of k indicates spatial attenuation of the wave,

Imk = γ = ω
√
µε

�
1 +

� σ

ωε

�2�1/4
sinφ

while the real part κ of k gives the wave phase speed
vph = ω/κ.

If σ is small (σ/ωε� 1), we may expand the functions (29) and (30) to first order:

|k| = ω
√
µε

�
1 +

1

4

� σ

ωε

�2�
* ω
√
µε

φ =
σ

2ωε
and we get back the expected results as σ → 0. The imaginary part of k is small because φ
is small.

Im (k) * ω
√
µε

σ

2ωε
=

σ

2

u
µ

ε
and the wave phase speed is almost unchanged:

vph * 1√
µε

But if σ is large (σ/ωε 1), φ→ π/4, and

|k| * ω
√
µε

u
σ

ωε
=
√
µσω

Im (k) * √µσω 1√
2
=

u
µσω

2
= Re (k)
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The wave is damped within a short distance

δ ∼ 1/γ =
u

2

σµω
(31)

The distance δ is called the skin depth.
In a conducting medium the relations between the fields are (eqn 3):

�B =
|k|
ω
eiφ
�
k̂ × �E

�
,

so φ is also the phase shift between the fields. If γ is small (γ � κ, low conductivity) then
the amplitude of �B is almost the same1 as the amplitude of �E times√µε, and the phase shift
is also small. But if γ is large (κ * γ, high conductivity σ/ωε 1) then

��� �B��� is much larger
than√µε

��� �E��� , and the phase shift is almost π/4 . Also the phase speed is given by
vφ
c
=

ω
√
µ0ε0

Re (k)
=

ω
√
µ0ε0s
µσω
2

=

u
2ωε0
σ
� 1

To summarize, in a good conductor the wave fields are primarily magnetic, �E and �B are
out of phase by π/4, and the wave phase speed is very slow.

3.2 Reflection and refraction at a boundary with a conducting medium

How does this affect the reflection and refraction of a wave? Consider a wave with wave
number k incident on a conducting medium. Inside the conductor the fields behave like

exp (iktx sin θt + iktz cos θt − iωt) = exp
#
ikx sin θ + iktz

v
1− k

2

k2t
sin2 θ − iωt

$
where k is the incident wave number. For a good conductor, with

κ * γ =

u
σµω

2
=
1

δ

we have

kδ = ω
√
µ0ε1

u
2

σµω
*
u
2ε1ω

σ
=
√
2
n1
n2

�
σ

ωε2

�−1/2
So kδ is small when σ/ωε2 is large. Then the coefficient of z is

ikt cos θt = i

t
k2t − k2 sin2 θ = i

t
κ2 − γ2 − k2 sin2 θ+ 2iγκ = i

t
−k2 sin2 θ + 2iγκ

1 In Gaussian units, B E.
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or

ikt cos θt = −k sin θ
u
1− i 2

k2δ2 sin2 θ

= −k sin θ
%
1 +

�
2

k2δ2 sin2 θ

�2&1/4
e−iχ/2

* −k
√
2

kδ
e−iχ/2 = −

√
2

δ
e−iχ/2 (kδ � 1) (32)

where
tanχ =

2

k2δ2 sin2 θ
and thus χ * π/2, and e−iχ/2 * (1− i) /√2. Thus the field components in the conductor
are proportional to

exp
k
−z
δ
(1− i)

l
This shows that the fields in the conducting medium propagate only a distance of order δ in
the z−direction (normal to the boundary).
For polarization perpendicular to the plane of incidence (only Ey non-zero), equation

(19) still holds, but the second boundary condition (equation 17) becomes (using 32):

(Ei −Er) cos θ = Et
kt
k
cos θt = Eti

√
2

kδ
e−iχ/2

* Et
(1 + i)

kδ
Combining with equation (19), we have:

2Ei = Et

�
1 +

i+ 1

kδ cos θ

�
* Et 1

kδ

�
i+ 1

cos θ

�
or

Et = 2Ei
kδ cos θ

(1 + i)
= Eikδ cos θ (1− i)

which is very small (|Et| � Ei). Thus almost all the wave energy is reflected. A similar
result holds for the other polarization. (See also Jackson problems 7.4 and 7.5.)
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