Abraham-Lorentz Self -force
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Abraham and L orentz (circa 1904) attempted a rigorous derivation fo the radiation
reaction force. Theideaisto model apartide as acollection of charges, currents and fields.
The basic equation of motion is:
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where Fiy is the sum of the external forces. We assume for the moment that /! the forces
acting are electromagneticin origin. Then the system’s total momentum is the sum of its
(apparently) mechanical momentum and the momentum of the fields. Thus:
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The rate of change of field momentum may be expressed in terms of the Lorentz force
density:
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(See eg equation 12.120). We decompose the fields into the sum of the sdf fidds plusthe
external fields:
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where the second term on the right hand side is the self force.
To cdculate this integral we assume:

e The particleis instantaneously at rest

e thecharge distribution isrigid and spherically symmetric



Then the expression for the self-force simplifies, since j = po' =0 :
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Theretardedtimet’ = ¢t — R/c differsfrom¢ by aterm of order a/c where a isthe radius of
the particle. Thistime is extremdy short, and the particle cannot move far during this time
interval. Thuswe may expand
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Now we can eval uate this expression term by term.
First the scalar potential part:
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by symmetry. (Interchange £ and ©’. The integral should not change, I; = I, but the
integrand changessign, implying I; = —I1,. So I = 0.)

(In detail...For aspherically symmetric distribution, p (Z,t) = p(rt) . Writel/R as
an expansion in Legendre polynomids. Put the polar axis along # while we do the =’
integration:
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The integral over 1" iszero unless! = 0. So we have:
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where g (r) isthe chargeinsideradiusr . Theright hand sideisthen:
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Now & = Zu + sind (X cos ¢+¥ sin ¢) ,s0 integrating over ¢ reduces the z— and
y—components to zero, while integrating over y reduces the z component to zero. )

n=1:R"!=1and V1= 0,50 thisterm iszero too.

n > 1: Relabel by settingm =n — 2

Now we want to combine the remaining (n > 1) terms with the vector potential terms,
so let’srelabel the p termsby setting n = m + 2
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Now use charge continuity to write
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Our expression becomes:
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Now integrate the last term over the prime variables. We use the usud bag of tricks:
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The integral of the curl converts to
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Also:
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The first term converts to asurface integrd viaa divergence theorem variant (see cover of J),

and theintegral iszero. Thelast term is zero since V' x R = 0. Since our objedt is rigid, 7
can either be in a constant direction, or due to rotation of the sphere. Jackson doesnot seem
to allow for rotation, in which case
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Then
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If we choose polar axisalong v,then theright hand side is:

— /Rn_lﬁ X <%(}5sin 9> &z’ =0
r

Thus:

and thus:

(
/R"—lé(ﬁ’j) Py = /[(}'-6') ﬁR”‘l—(” ﬁ)R" 1R ( ﬁ') éR"‘l} &

and finally!
nl"/—.*_,, E 3 - Rang/
/R V@ Dy —/(J( t)V)(+)d
— 1 n—17% I 2 A n-93 ,
- n+2/R j+(n-1)j-RR"*Rd’z
and so from equation (3) we get
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Now we set j = p@ (rigid assumption):
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Next choose polar axisalong v, and the integral becomes:
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Because of the symmetry, the direction of ¥ isthe only direction smgled out, and so the
L —component must integrate to zero. (It is not trivial to demonstrate thisexplicitly.) Then:
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Term by term: Theeasiest term is:
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and thus then = 1 term in our seriesis:
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and this contributesaterm Fy.; ; = %f%%}z which is exactly the expression we aobtained
before for the radiation damping self-force
n = 0 Todo the primeintegrd, put £ inthex — z plane. Then ¢ =0 :
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where v is the angle between R and #. Now here Jackson inserts the average value of

cos’y = 1/3, which | think isincorrect (or & least needs better justification) to obtain for
then = 0 term:
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where U isthe electromagnetic energy of the sphere. Thenif weinterpret U/c? = m, the

mass of the particle, we get:
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Thus we have, including only the first 2 terms in the series,
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In an alternative approach, we take the Fourier transformof equation (1) or equivalently
(2) which now reads:
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Taking the FT we get:
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and taking the average of cos? ~ per JDJwe have
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We can rewrite thisexpression as.
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Now the form factor for a particle is defined as the Fourier transform of p :
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So we may write:
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Change variablesto R = & — @'
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To make the upper limit vanish, welet w have asmall, positive imaginary part, so that
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which is Jequaion 16.32. Lettingw — 0, weobtain thet| m6~| ndependent ”physical” mass
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of the particle including the effect of the sdf fields. Itis
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For a point particle, for form factor f (E) =1 (This gives a delta-function density.). The
mass function isdivergent for such aparti cle. The effective mass
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The integral in this expressionis convergent even when f (E) =1.
For apoint particle:
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We do the integral by contour integration. Therearepolesa k = tw/c. Recall that w has
asmall, positive imaginary part, so these poles are not on thereal axis. Closing in the upper
helf-plane, we endose the pole at &k = +% and theresult is:
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Looking back at the transformed equation of motion, the solution is
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We can invert the transform using the convolution theorem, where
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Fort > Oweclosedownward and f (t) = 0. But for¢ < 0 we must close upward, enclosing
thepoleat /7. Thesolutionis
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Once agan we get an integral over the future.



