The self-consistency problem in EM radiation

Charged particles are the sources for EM fields, but the particles respond
to the fields through the Lorentz force. Accelerated particles radiate, and the
energy radiated must come from the particle’s energy, and so tha back-reaction
of the field son the particles cannot be ignored. Let’s use a simple example to
see when this ezect is likely to be important.

A particle with charge g and acceleration a radiates power (by the Larmor
formula)
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If the particle starts from rest, it gains energy in time ¢ equal to
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Thus the energy lost by radiation is negligible if
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where the last equality gives the result for an electron, and rq is the classical
electron radius. Thus this ezect is important for very short time-scale phenom-
ena, or in the very first instants of a particle’s acceleration. Since 7 « 1/m,
the eoect is greatest for the particles with smallest mass. For an electron
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This is a very short time!
Another example. For a particle undergoing oscillatory motion with ampli-
tude d and frequency wy, its energy is
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and its acceleration is
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With ¢ equal to the period, equation (1) for this system takes the form
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So again the ecect is important for systems with very short periods.
adiation reaction

Neglecting radiation, the equation of motion for a particle acted upon by an

external force is: .
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To incorporate the energy loss due to radiation, we assume there is an ecective
force Fyaq that also acts on the particle, so that the true equation of motion is:

dv = _,
m% = Fext + Frad

The known properties of this force are:
° ﬁad must — 0 if the acceleration a — 0, because then no power is radiated.

e Fi.q should be proportional to ¢2 because P is. (The sign of the charge
should not appear)

o Fi,4q most likely involves the timescale .

Now we invoke energy conservation. The work done by this force over a time
interval must equal the energy radiated. Thus

ty R to to 2 2d—a d—»
. q° av U
Fd.vdt:—/ P(t) dt:_/ i e
/tl A " ., 3@ @
Integrate by parts:
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The integrated term is zero if:

e We have uniform circular motion so that 4. 7 = 0 at all times

e The motion is periodic and the time interval ¢, — ¢; is a whole number of
periods

e The acceleration lasts for a finite time less than, and included within,
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In any of these cases, we have:
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Thus in a time-averaged sense, we may say that
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This result satisfies the preoperties we previously enumerated for Frad. The
equation of motion for the particle now becomes:
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This is the Abraham-Lorentz EKJBtiOT’]Of molt_ion. .
ranam-Lorentz equation

Implications of the
To understand the implications of this, we solve the equation using an inte-
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grating factor: Let
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and inserting this result into equation (5), we have
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We may now integrate directly to get:
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To awvoid an unknow integration constant, we’d like to inetgrate over a fixed
interval, with the variable ¢ at one end. But we know the exects of radiation

reaction are negligible at large times, so
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An integral over the future! Letting s= (¢t —t') /=, this becomes
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To verify that this makes sense, let’s expand our function
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The nth term involves the integral
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where the first term is the Newtonian result, while the remaining terms are the
corrections for radiation reaction, and are increasingly negligible as n increases.
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The integral over the future extends over a time roughly or order = because
the exponential reduces the integrand appreciable for ¢" >, and so this rather
bizarre result doe not violate "macroscopic causality: The uncertainty principle
restricts our knowledge:
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Then if the change in energy is or order mc?, the particle’s rest energy, the
restirtcion on observable time intervals is
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So the interval in the future that determines the radiation reaction ecects is
within the quantum uncertainty.

Now let’s apply this to an electron in an atom. The electron is bound by a
restoring force Fres = —mw3Z and so the equation of motion, including radiation
reaction, is
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Let’s begin by considering the case where Fot = 0. The zeroth order solution,
ignoring radiatin reaction, is

so let’s look for a solution

Then stu€ng in, we get
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Now the solution is
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and its Fourier transform is
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Then we can compute the power radiated:
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Result is very peaked around w = wq so adding positive and negative frequency

contributions, and noting that I" < wq, the power spectrum for positive (phys-
ical) frequencies is
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where Fy is the initial energy of the oscillator and
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is the line shape function.
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As w— 00,0 — —7/2 and asw — 0,
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Thus the total energy radiated is the initial energy of the oscillator, as expected.
Now let’s look at a driven oscillator. This is a model for an atom encoun-
tering an incoming electromagnetic wave.
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We expect the response to be at the driving frequency: z = zoe~***. Then:
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and the scattering cross section is:
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(@) For w > wp, we have o ~ or. The electron scatters radiation as if it

were free.
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and we have Rayleigh scattering.
(c)For w ~ wy,
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and we have an absorption line with the Lorentz profile. In the plot below, we
used I'/wo = 1/5 in equation (7).
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The total scattering cross section (frequency inegrated) for the line is:
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where we used our previous result for the integral over the line profile . Thus
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which is independent of wy. Thus we may write the result in terms of frequency
v as.
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The fudge factor f is called the oscillator strength. It may be measured or
calculated (for simple atoms) using quantum mechanics. It takes into account
deviations from classical theory. Values of f are tabulated in reference works
such as Allen’s Astrophysical Quantities.



