Physics 705- Notes batch 2

1 Relativistic E&M

Now we want to discover the set of tensors and the covariant relations that
govern E&M.
We begin with the current 4-vector which is:

J= (cp,f) (1)

Note that each component is dimensionally equivalent. The charge conservation
law is

_:o:_c+v.j (2)

where the term on the left is the 4-divergence of the 4-vector J.
Next we conjecture the the 4-potential is given by

A=(9,4) (3)

We find that the Lorentz gauge condition is obtained by setting the 4-divergence
to zero:

0A* 0¢

— =0=--+V-4 4
oxH oct + (4)
We obtain the wave equation from the wave operator
1 02
2 _ _ 2
Then
A = 4—WJ
c
4
oA = T (5)

This gives us both of the relations we’ve seen before:

a = 0: c—zwfv (;5:47Tp
, 1024 _, - 4w
167 = 7. _62 _8t2 — A = _C ]

The potential transforms with the Lorentz transformation according to the usual
rule for vectors. Note particularly that the charge density is NOT a scalar!

Now for the fields. First note the relations between the fields and the po-
tentials:
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We know that curls are usually associated with antisymmetric tensors, so we
define the field tensor
FoP = 9*AP — 9P A~ (6)

This tensor is antisymmetric, so it has zeros along the diagonal. Recall that
the gradient form has components

. =(9 9 9 9
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so the corresponding vector has components

0 0 0 0
9% = aﬂa - = - - - _ -
g8 (5'ct7 oz’ Oy’ 82)
Thus
FlO —_ alAO o aOAl _ _FOI
_% - 0A;
oxr  det "
Similarly we find F?° = E, and F?3° = F,.
Now look at
F21 —_ 82A1 o 61A2 _ _F12
0A, 0A,
= — _— = BZ
dy + ox

Thus we have the components of the tensor:

0 —-E, —-E, —E.
E. 0 -B. B, o
E, B, 0 -B,

E. -B, B, 0
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Now we can find the transformed field components by transforming the tensor

in the usual way:
F" = AEAGFOP



or, in matrix notation:

F = AFAT
v _7/6 0 0 0 _Ex _Ey _Ez Y _76 0
_ -6 v 0 0 E, 0 -B. By =B v 0
0O 0 10 E, B. 0 -B, o 0 1
0 0 0 1 E., -B, B, 0 0 0 0
Y _7/6 0 0 Eﬂc'}//@ — Lz _Ey _Ez
_ -8B 0 0 E.vy —E.p -B, By )
0 0 10 En—-B.AB —-En8+B.y 0 —B,
0 0 0 1 E.vy+Bynp —E.v8—-Byy B. 0
0 _72Ea: + VzﬂQEa: —Lyy + BZ’7/8 _Ez'7 - By'YB
— _’YQBQEQJ + ’YQEz 0 Ey'Yﬁ - Bz’Y E276 + By’Y
Ey’7 - Bz'yﬁ - y'YB + Bﬂ 0 _Ba:
Ez7 + By’Yﬁ _EZFYB - By'}/ Bw 0
But 2 (1 — BQ) =1, so
0 _Ez - (Ey _/BBZ) - (Ez +BB7/>
F: E:r 0 - (Bz nyﬂ) ’Y(By+Ezﬁ)
v(Ey —fpB.) v(B:— E,f) 0 —B,
v(E, + BBy) -y (By + E.B) B, 0

Thus we have the transformation rules:

The components of E and B parallel to the relative velocity are

unchanged, and the perpendicular components transform as:

ELZV(EL+BX§)

and

ELZV(EL*BXE>

We’ll come back to these results in a moment.

(8)

(9)

Next we want to write Maxwell’s equations in covariant form. We can group
the equations into the source-free equations

VxE+

and the equations with sources
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The second pair are obtained from the covariant relation

4

O FP = — P (10)
c
For example, with 8 = 0 we have
- = 4
V-E= —ch
c
and with 8 =1
g Ft = g
c
4
OFO + 0 F? + 0, F =
c
0 0 0 4
— (-E.)+=—(B,)+—=—(-B,) = —J,
This equation is the z—component of
- o 47 - 10E
B=—J+-—
VX c + c Ot

The other components follow similarly.
Two obtain the source-free equations we first define the dual tensor

(0% 1 «
F B = 56 B,W;F»yé (]‘1)
where %7 is defined similarly to €ijk- (2879 = 1 if aByd = an even permuta-

tion of 0123, and so on.) First compute the covariant components of the field
tensor:

Foeﬁ = ga'ygﬁéFWs
1 0 0 0 0O -E, —-E, -LE 1 0 0 0
. 0 -1 0 0 E, 0 -B., By 0 -1 0 0
- 0O 0 -1 0 E, B, 0 B, 0O 0 -1 0
0 O -1 E. -B, B, 0 0 0 0 -1
o 0 -1 0 0 E, 0 B, B,
- 0O 0 -1 0 E, —-B, 0 B,
0 0 0 -1 E. B, -DB, 0
0 E, E, E,
o —E, 0 -B., By
- -E, B. 0 -B, (12)

-E. -B, B, 0
and then we have, for example, the dual tensor components:

1 1
Fol = §€0175F76 ) (Fas — F32) = Faz = =B,
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and

L 1245 1 1903 L 1230
26 F.s= 26 Fos + 26 F3p

To get 1203 from 0123 We have to do two interchanges: First interchange 2
and 0 to get 1023 then interchange 1 and 0 to get 0123. Thus this is an even
permutation and £'2°% = +1. Thus

le —

1
F1?2 = 3 (Foz — F30) = E,

Thus

0 -B, —-B, —-B,
B, 0 E. -E,
B, -FE, 0 E,
B, E, -E, 0

F= (13)

Then the remaining two Maxwell equations may be written in covariant form
as

DaFP =0 (14)
Finally we note the Lorentz force may be written in covariant form as
po = 1pesy,
c
For example
q q
F, = E (qu,@) = E’Y [ExCJF (*BZ) (*uy) =+ By (*Uz)]

= olr (59))
c x

This is the non-relativistic result in the limit § — 0, v — 1.

2 Fields due to a moving point charge

Let a charge ¢ move at constant velocity ¢’ in the lab frame, and let us set up
coordinates as shown in the diagram.
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charge ity lab frame at t=0

- (lab

X frame)

In its own rest frame, the field due to a point charge obeys the usual Coulomb
law:

—

E=2%7 FB=o.
r
Thus the field at the lab origin in the charge’s frame is

— t — m —
E. - qu _ qy

Now we transform to the lab frame using equations (8) and (9) with velocity in
the negative-r—direction:

— qut
Er = Bo=.m"———5p5
(?2 + (vt) )
= 79y
By = By =50
—2 -
(y + (vt) )
E. = 0



and

B, = 7(-FxE) =-BF. =0
z = — B4y
B. = v(-FxE) =B, = ———
(@2 + (vt) )
Now we still need to transform the coordinates to the lab frame:
T=v(zx—ot); =y and ct = (ct — Bx)

Since our observation point is at the lab origin, z = 0. Thus

5 o— _ qpyct
r 3/2
(y2 + (ﬂvct)2)
YqY
By = - 3/2
(y2 + (ﬁvct)Q)
B, = _ B9y — = F,
(y2 + (ﬁvct)Q)

First check that these results are correct in the non-relativistic limit (8 — 0,
~v — 1). The interesting result is the relativistic limit as v becomes very large.
The fields become impulsive, (large for a very small time interval). The fields

fall rapidly to zero for
Y
t > ——
2| Brrc
which is very small when v is large. In addition, the magnitude of the fields
becomes large for t ~ 0. The diagram shows the field components as functions

of time for 5 =0.1 (y = 1.005)and S = 0.999 (v = 22.366) .
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3 Invariants

We can form several invariants from the field tensors F*8 and F*? First we
evaluate

FPF,3 = B? — E?

Thus if we have a pure electric field in one frame, F > B in all other frames. The

fields maintain their dominantly electric character, and similarly for magnetic
fields.

A second invariant is
F.3F*? = —E-B

Since this product is invariant, if either of E or B is zero in one frame, the
fields in any other frame are perpendicular.

Check that these results hold true for the point charge fields we calculated
above.

A special case is the EM wave, for which both invariants are zero: (ELB
and E = B). These properties are therefore true in all frames.



