
Physics 705- Notes batch 2

1 Relativistic E&M

Now we want to discover the set of tensors and the covariant relations that

govern E&M.

We begin with the current 4-vector which is:

J =
³


´
(1)

Note that each component is dimensionally equivalent. The charge conservation

law is



= 0 =




+ ∇ · (2)

where the term on the left is the 4-divergence of the 4-vector J.

Next we conjecture the the 4-potential is given by

A =
³
 

´
(3)

We find that the Lorentz gauge condition is obtained by setting the 4-divergence

to zero:



= 0 =




+ ∇ ·  (4)

We obtain the wave equation from the wave operator

¤2 =  =
1

2
2

2
−∇2

Then

¤2A =
4


J


 =

4


 (5)

This gives us both of the relations we’ve seen before:

 = 0 :
1

2
2

2
−∇2 = 4

 =  :
1

2
2 

2
−∇2  = 4




The potential transforms with the Lorentz transformation according to the usual

rule for vectors. Note particularly that the charge density is NOT a scalar!

Now for the fields. First note the relations between the fields and the po-

tentials:

 = ∇× ;  = −1


 


− ∇
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We know that curls are usually associated with antisymmetric tensors, so we

define the field tensor

 =  −  (6)

This tensor is antisymmetric, so it has zeros along the diagonal. Recall that

the gradient form has components

 =

µ
















¶
so the corresponding vector has components

 =  =

µ



− 


− 


− 



¶
Thus

 10 = 10 − 01 = − 01

= −

− 


= 

Similarly we find  20 =  and  30 = 

Now look at

 21 = 21 − 12 = − 12

= −


+




= 

Thus we have the components of the tensor:

 =

⎛⎜⎜⎝
0 − − −

 0 − 

  0 −

 −  0

⎞⎟⎟⎠ (7)

Now we can find the transformed field components by transforming the tensor

in the usual way:



= ΛΛ





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or, in matrix notation:

 = ΛΛ

=

⎛⎜⎜⎝
 − 0 0

−  0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

0 − − −

 0 − 

  0 −

 −  0

⎞⎟⎟⎠
⎛⎜⎜⎝

 − 0 0

−  0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
 − 0 0

−  0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

 − − −

 − − 

 − − + 0 −

 + − −  0

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0 −2 + 22 − + − −

−22 + 2 0  −  +

 − − + 0 −

 + − −  0

⎞⎟⎟⎠
But 2

¡
1− 2

¢
= 1 so

 =

⎛⎜⎜⎝
0 − − ( − ) − ( + )

 0 − ( −)  ( +)

 ( − )  ( − ) 0 −

 ( + ) − ( +)  0

⎞⎟⎟⎠
Thus we have the transformation rules:

The components of  and  parallel to the relative velocity are

unchanged, and the perpendicular components transform as:

⊥ = 
³
⊥ +  × 

´
(8)

and
⊥ = 

³
⊥ −  × 

´
(9)

We’ll come back to these results in a moment.

Next we want to write Maxwell’s equations in covariant form. We can group

the equations into the source-free equations

∇ ·  = 0

∇×  +
1



 


= 0

and the equations with sources

∇ ·  = 4

∇×  − 1


 


=

4


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The second pair are obtained from the covariant relation


 =

4


 (10)

For example, with  = 0 we have

∇ ·  = 4




and with  = 1


1 =

4


1

0
01 + 2

21 + 3
31 =

4


1




(−) +




() +




(−) =

4




This equation is the −component of

∇×  =
4


 +

1



 



The other components follow similarly.

Two obtain the source-free equations we first define the dual tensor

F =
1

2
 (11)

where  is defined similarly to  (
 = 1 if  = an even permuta-

tion of 0123, and so on.) First compute the covariant components of the field

tensor:

 = 


=

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

0 − − −

 0 − 

  0 −

 −  0

⎞⎟⎟⎠
⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

0   

 0  −

 − 0 

  − 0

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0   

− 0 − 

−  0 −

− −  0

⎞⎟⎟⎠ (12)

and then we have, for example, the dual tensor components:

F01 = 1

2
01 =

1

2
(23 − 32) = 23 = −
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and

F12 = 1

2
12 =

1

2
120303 +

1

2
123030

To get 1203 from 0123 We have to do two interchanges: First interchange 2

and 0 to get 1023 then interchange 1 and 0 to get 0123. Thus this is an even

permutation and 1203 = +1 Thus

F12 = 1

2
(03 − 30) = 

Thus

F =

⎛⎜⎜⎝
0 − − −

 0  −

 − 0 

  − 0

⎞⎟⎟⎠ (13)

Then the remaining two Maxwell equations may be written in covariant form

as

F = 0 (14)

Finally we note the Lorentz force may be written in covariant form as

 =





For example

 =




¡
 1

¢
=




 [+ (−) (−) + (−)]

= 

∙
 +

µ



× 

¶


¸
This is the non-relativistic result in the limit  → 0  → 1

2 Fields due to a moving point charge

Let a charge  move at constant velocity  in the lab frame, and let us set up

coordinates as shown in the diagram.
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In its own rest frame, the field due to a point charge obeys the usual Coulomb

law:
 =



2
̂  = 0

Thus the field at the lab origin in the charge’s frame is

 = − ³
2 +

¡

¢2´32   = − ³

2 +
¡

¢2´32   = 0

Now we transform to the lab frame using equations (8) and (9) with velocity in

the negative-−direction:

 =  = − ³
2 +

¡

¢2´32

 =  = − ³
2 +

¡

¢2´32

 = 0
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and

 = 
³
− × 

´

= 0

 = 
³
− × 

´

= − = 0

 = 
³
− × 

´

=  = − ³

2 +
¡

¢2´32

Now we still need to transform the coordinates to the lab frame:

 =  (− ) ;  =  and  =  (− )

Since our observation point is at the lab origin,  = 0 Thus

 = − ³
2 + ()

2
´32

 = − ³
2 + ()

2
´32

 = − ³
2 + ()

2
´32 = 

First check that these results are correct in the non-relativistic limit ( → 0

 → 1) The interesting result is the relativistic limit as  becomes very large.

The fields become impulsive, (large for a very small time interval). The fields

fall rapidly to zero for

||  



which is very small when  is large. In addition, the magnitude of the fields

becomes large for  ≈ 0 The diagram shows the field components as functions

of time for  = 01 ( = 1005)and  = 0999 ( = 22366) 

-1 1

-0.4

-0.2

0.2

0.4

ct/y

E


2 versus  Solid:  = 01 Dashed,  = 0999
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10

15

20

ct/y

E


2 versus  Solid:  = 01 multiplied by 5, Dashed,  = 0999

3 Invariants

We can form several invariants from the field tensors  and F First we

evaluate

 = 2 −2

Thus if we have a pure electric field in one frame,    in all other frames. The

fields maintain their dominantly electric character, and similarly for magnetic

fields.

A second invariant is

F = −  · 
Since this product is invariant, if either of  or  is zero in one frame, the

fields in any other frame are perpendicular.

Check that these results hold true for the point charge fields we calculated

above.

A special case is the EM wave, for which both invariants are zero: (⊥ 

and  = ) These properties are therefore true in all frames.
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