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1 The beginnings of relativity

The principle of relativity was first expressed by Galileo in the 17th century:

If two reference franes move at constant relative velocity with re-
spect to each other, the results of any physics experiment conducted
in either frame will be the same.

Equivalently, the laws of physics are independent of reference frame. Galileo
used this principle to understand projectile motion (free fall under gravity com-
bined with constant horizontal velocity). But at the beginning of the 20th
century, Einstein noticed that there were di¢culties in applying this principle
to E&M.

1. Einstein imagined riding along with an EM wave by moving to a frame
travelling at speed c with respect to the original frame. He noticed that
the oscillating fields he would apparently see in this frame were inconsis-
tent with Maxwell’s equations.

2. Maxwell’s equations predict a fixed speed for light: c = 1/
p

µ0ε0 = 3£108

m/s. But Galilean relativity predicts that an observer in a frame moving
at speed v with respect to the "lab" frame, and parallel to the direction
of propagation, should measure wave speed c ¡ v. This is what happens
with sound waves, for example. (See LB §16.4.)

3. There is a simple experiment that we use to demonstrate Faraday’s Law.
Take a coil and push a bar magnet toward it (LB §30.1). As the magnetic
flux through the coil increases, there is an induced electric field that drives
current in the coil. But what happens if we hold the magnet fixed and
push the coil toward the magnet? According to the principle of relativity,
we get the same current. But in this case the force driving the current is
part magnetic, since the electrons in the coil now have a non-zero velocity
through the magnetic field, and part electric due to induced electric field.
This appears to violate the principle of relativity.

It would appear that we need to throw out either the principle of relativity
or Maxwell’s equations. But Einstein realized there was another alternative:
we can rethink our ideas of space and time. He started with the following
postulates of Special Relativity:

1. The speed of light is constant and equal to 1/
p

µ0ε0 independent of ref-
erence frame.

2. The laws of physics are independent of (inertial) reference frame.
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The whole theory follows from these two postulates. We shall discover that
some physical quantities are invariant: that is, they have the same value in all
reference frames. These are obviously very important quantities, and we will
want to foucus attention on them. Invariant quantities include the speed of light
(postulate 1), as well as the mass and charge of a particle. Relative quantities
have di¤erent values in di¤erent reference frames. They include electric and
magnetic fields, as well as most distances and times.

1.1 Relativity of time intervals
A proper understanding of relativity requires that we understand the process
of measurement. Physical processes are defined by a series of events. An
event is defined by its spatial coordinates and the time that it occurs— its time
coordinate. Now consider an experiment to measure time intervals. We design
a clock by generating a pulse of light that travels from its source to a mirror
and back to a receiver co-located with the source. The distance from source to
mirror is `, and so the time interval between the two events (a) pulse is generated
and (b) pulse is received is ¢t = 2`/c.

Now we place our clock on a train travelling at speed v with respect to the
original, or "lab", frame. The picture of the events as seen from the lab is as
follows:

The pulse is emitted at time t0
1, and reflected at time t0

2, both measured in
the lab frame. But the mirror has moved a distance L = v (t0

2 ¡ t01) during
this time, and so the light pulse has to travel a distance s =

p
`2 + L2 to reach

the mirror, and thus takes a time

t0
2 ¡ t0

1 =
s

c
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The return trip is similar, giving an observed clock interval of

¢t0 = t0
3 ¡ t0

1 = 2(t02 ¡ t01) =
2s

c

Squaring and simplifying, we get
µ

¢t0

2

¶2

=
1

c2

"
`2 + v2

µ
¢t0

2

¶2
#

¢t0

2
=

`

c
p

1 ¡ v2/c2

or
¢t0 = γ¢t (1)

where

γ =
1p

1 ¡ β2
; β =

v

c
(2)

Gri¢ths describes equation (1) with the phrase "moving clocks run slow", but
this is incredibly misleading, as the phenomenon has nothing to do with the clock
per se, and I strongly suggest that you forget it immediately. The important
issue is:

The smallest time interval between two events is measured by an
observer who sees both events happen at the same place in her/his
reference frame. All other obervers in other frames measure a longer
time interval between the two events.

This smallest time interval is called the proper time interval between the
two events. As we shall see, the proper time interval is an invariant, while the
coordinate time interval is a relative quantity.

1.2 Length contraction

The measurement of lengths is a little more complicated, but is closely related to
the measurement of time intervals. We can see this by setting up an experiment
to measure the length of a rocket. Engineers on board the rocket measure its
length in the usual way using stationary meter sticks, and get a result `. (An
engineer at each end of the rocket reads the meter stick at the same time.) The
rocket is moving at speed v past a space station. How can engineers on board
the station measure its length? Simple: they note the time t01 that the front
end passes them, and the time t0

2 that the back end passes, and conclude that

`0 = v (t02 ¡ t01)

The engineers on the rocket see the space station fly past them, and also note
the times: t1 when the station passes the nose cone and t2 when the station
passes the tail fins. They conclude that

t2 ¡ t1 =
`

v
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Now which observers see both events at the same place? The space station
engineers! So their time interval is the shorter one.

t2 ¡ t1 = γ (t0
2 ¡ t0

1)

and thus
`

v
= γ

`0

v

and thus

`0 =
`

γ
(3)

The rocket appears shorter to the observers on the space station, who see the
rocket moving by them. This e¤ect is called length contraction. It e¤ects
lengths measured parallel to the relative velocity ~v. Lengths perpendicular to ~v
are not a¤ected. To see why, consider a train moving along rails separated by a
distance w. If w were a relative quantity, then we’d have a dilemma. Suppose
the observers on the train see the separation of the moving tracks contracted
to a distance w0 < w. Then the train’s wheels would fall o¤ the track to the
outside as the train accelerates. But if the observers on the ground see the
moving train’s axle contracted to a distance w0 < w, the train’s wheels would
fall o¤ the track to the inside. Both can’t be true, so we conclude that w0 = w.

Again, I strongly suggest that you avoid Gri¢th’s misleading statement
that "moving objects are shortened". Nothing happens to the objects: the
proper length of an object is an invariant, and length contraction is a purely
observational e¤ect. i

The greatest length of an object (its proper length) is measured
by observers who observe the object to be at rest.

1.3 Relativity of sumultaneity

Along with these e¤ects we find another related, and perhaps stranger, e¤ect.
Whether two events are simultaneous depends on the observer. To see why this
happens, consider Einstein’s example. A train of proper length ` is moving at
speed v with respect to the ground ("lab frame"). An observer, Oliver, on the
ground sees two lightning bolts hit the ends of the train simultaneously, just as
the center of the train passes him. How does he measure this? Well, the light
from the bolts reaches him at the same time t1, so he concludes that the bolts
hit each end at time

thit = t1 ¡ `/2

γc

Remember: he oberves the train’s length to be contracted, hence the γ in the
denominator.

Now let’s consider the events as observed by Penny, sitting on the middle of
the train. Light from the front bolt reaches Penny at time ¢t1 after it struck
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the train. During the travel time c¢t1, Penny advances a distance v¢t1 toward
the bolt strike, and so the distance travelled is not `/2 but `/2 ¡ v¢t1, and so

c¢t1 =
`

2
¡ v¢t1

and thus

¢t1 =
`

2c (1 + β)

Similarly, for the rear bolt we get

¢t2 =
`

2c (1 ¡ β)

Thus Penny observes the front hit before the rear hit. But if Penny observes
the front hit at t0

1, and knows that the front end is a distance `/2 from her, she
concludes that the bolt struck at

t0
hit, f ront = t0

1 ¡ `

c

and if she observes the back hit at t02 > t0
1, she concludes that

t0hit, back = t02 ¡ `

c

Since these times are not equal, she concludes that the two bolts did not hit
simultaneously! The sequence of events is shown in the drawing below.
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2 The mathematics of Spacetime

To describe an event in spacetime, we need four coordinates: x, y, z and t. We
can call t the fourth coordinate, or, more frequently, we use

x0 = ct, x1 = x, x2 = y, x3 = z

where ct is the zeroth coordinate. The values of these coordinates are di¤erent
for di¤erent observers. But some combinations are invariant. For example,
consider a light wave that starts at the origin (of spacetime! ct = x = y = z = 0).
After a time dt it has travelled a distance cdt :

d` =

q
(dx)

2
+ (dy)

2
+ (dz)

2
= cdt

and thus the combination

ds2 = c2dt2 ¡ d`2 = 0 (4)

and this must hold in any reference frame because the speed of light is the same
in every reference frame (postulate 1). The quantity ds is called the di¤erential
space-time interval between two events on the light ray. It is an invariant.
When ds = 0, as here, the interval is lightlike. Timelike intervals have ds2 > 0
and spacelike intervals have ds2 < 0. These distinctions are also invariant. An
interval cannot be spacelike in one frame and timelike in another.

We can draw a diagram, called a space-time diagram, in which we represent
the events as points. It is necessary to suppress at least one space dimension to
draw the diagram. Light rays travel at 45± in such a diagram. These diagrams
are useful for getting a visual image of the situation of interest. All events that
can be reached from an event E1 constitute the future of that event, and they
lie on or within an upward-opening cone with opening angle 45± and apex at
point E1. Similarly the past is the set of events from which E1 can be reached.
These events lie in a downward-opening cone with apex at E1.

2.1 The Lorentz transformation
Now we’ll look at how the coordinates change as we move from frame to frame.
Since we expect an object moving at constant velocity in one frame (which we’ll
call unprime) to be moving at some constant velocity in any other frame (prime),
the transformation must be linear. If this were not true, we would have accel-
erations (and thus forces) in one frame and not in another. This would violate
postulate 2. For simplicity, let’s put the x¡axis along the relative velocity ~v.
Thus, since we have already established that dimensions perpendicular to ~v are
not contracted, we expect

y0 = y; z0 = z

But

ct0 = Act + Bx

x0 = Dct + Ex
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Now we use the invariance of the space-time interval :

ds2 = (cdt0)
2 ¡ (dx0)

2 ¡ (dy0)
2 ¡ (dz 0)

2

= (cdt)
2 ¡ (dx)

2 ¡ (dy)
2 ¡ (dz)

2

Next insert our assumed linear transformation:

(Acdt + Bdx)
2¡ (Dcdt + Edx)

2 ¡ (dy)
2 ¡ (dz)

2
= (cdt)

2¡ (dx)
2 ¡ (dy)

2 ¡ (dz)
2

This statement must be true for all values of dt, dx, dy, dz. So first let dx =
dy = dz = 0. then

A2 ¡ D2 = 1 (5)

Next let dt = dy = dz = 0.
B2 ¡ E2 = ¡1 (6)

Finally with dy = dz = 0, we get
¡
A2 ¡ D2 ¡ 1

¢
(cdt)

2
+

¡
B2 ¡ E2 + 1

¢
dx2 + (AB ¡ DE) 2cdtdx = 0

and using the results (5) and (6), this simplifies to

AB = DE (7)

Thus B = DE/A and inserting this into (6) we get

E2

µ
D2

A2
¡ 1

¶
= ¡1

and then using equation (5) we get

E2

A2
= 1

so
E = §A

But if A were negative, time would be running backward in the prime frame,
and that can’t be. Similarly, if E were negative, distances would be increasing
in opposite senses in the two frames— this would be inconvenient to say the least.
So we require both E and A to be positive, and thus E = A. Then we also have
B = D, and our transformation has simplified:

ct0 = Act + Bx

x0 = Bct + Ax

Now consider an object at rest at the spatial origin of the prime frame:
x0 = y0 = z 0 = 0 for all t0. As measured in the unprime frame, this object has
coordinates

x = vt, y = z = 0
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And thus
x0 = Act + Bvt = 0 ) A = ¡Bβ

and then from (5) we get

A2
¡
1 ¡ β2

¢
= 1

A =
1p

1 ¡ β2
= γ

So finally our transformation is:
Lorentz transformation:

ct0 = γ (ct ¡ βx)

x0 = γ (x ¡ βct) (8)

As β ! 0, γ ! 1 and we get back the Galilean transformation

x0 = x ¡ vt

In a space-time diagram for the unprime frame, the prime axes are sloping lines
making angle θ with the x¡ and ct¡axes, where

tan θ = β

The new space and time axes coincide along a 45± line as β ! 1, thus we find
that we cannot have a frame travelling at a speed greater than c with respect
to the first. Use this diagram to show that events simultaneous in the unprime
frame are not simultaneous in the prime frame, and vice versa..

Now let’s revisit time dilation Two events have coordinates (ct1, x1, 0, 0)
and (ct2, x2, 0, 0) in the unprime frame. In the prime frame, the coordinates
are

ct0
1 = γ (ct1 ¡ βx1)
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and
ct0

2 = γ (ct2 ¡ βx2)

If x2 = x1, the time interval between events in the prime frame is

¢t0 = t0
2 ¡ t0

1 = γ (t2 ¡ t1) = γ¢t

The events occur at the same place in the unprime frame, and so the time
interval in the prime frame is longer. But suppose x2 6= x1. Then

x0
1 = γ (x1 ¡ βct1)

x0
2 = γ (x2 ¡ βct2)

and now let’s require that x0
2 = x0

1 : the events occur at the same place in the
prime frame.

x1 ¡ βct1 = x2 ¡ βct2 ) x2 ¡ x1 = βc (t2 ¡ t1)

Then

¢t0 = t0
2 ¡ t0

1 = γ

µ
t2 ¡ t1 ¡ β

c
(x2 ¡ x1)

¶

= γ

µ
t2 ¡ t1 ¡ β

c
βc (t2 ¡ t1)

¶
= γ (t2 ¡ t1)

¡
1 ¡ β2

¢
=

t2 ¡ t1
γ

Now the interval is shorter in the prime frame, as expected.

2.2 The velocity transformation

The velocity of a particle measured in the prime frame is

~u0 =

µ
dx0

dt0
,
dy0

dt0
,
dz 0

dt0

¶

Let’s look at the x¡component first. Using the Lorentz transformation, we
have

u0
x =

γ (dx ¡ βct)

γ (dt ¡ βdx/c)
=

dx/dt ¡ βc

1 ¡ (β/c) dx/dt

=
ux ¡ v

1 ¡ βux/c
=

ux ¡ v

1 ¡ ~β ¢ ~u/c
(9)

while for the y¡component, we get

u0
y =

dy0

dt0 =
dy

γ (dt ¡ βdx/c)
=

uy

γ
³
1 ¡ ~β ¢ ~u/c

´ (10)

It is easy to check that we get back the right Galilean results as β ! 0. But
look at what happens if ux ! c (and then of course u0

y = u0
z = 0)

u0
x =

c ¡ v

1 ¡ β
= c
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This result is required by postulate 1.
It’s a little more interesting if uy ! c, ux = 0 Then we get

u0
y =

c

γ
; u0

x = ¡v

and

j~u0j =

q¡
u0

y

¢2
+ (u0

x)
2

=

s
c2

γ2
+ v2 =

p
c2 ¡ v2 + v2 = c

2.3 Metrics and 4-vectors
We can write the coordinates of an event in spacetime as the components of a
4-dimensional vector:

#
r = (ct, x, y, z)

Then a di¤erential displacement

d
#
r = (cdt, dx,dy, dz)

with magnitude equal to the space-time interval (4):

d
#
r ¢ d

#
r = c2dt2 ¡

¡
dx2 + dy2 + dz2

¢

This is almost the usual rule for finding dot products, except for a sign change.
The metric for spacetime is

g =

0
BB@

1 0 0 0
0 ¡1 0 0
0 0 ¡1 0
0 0 0 ¡1

1
CCA

and we have
d

#
r ¢ d

#
r = d

#
r g d

#
r = drµgµν drν (11)

where we can use matrix multiplication to evaluate the product on the right.
We have discovered the rule for taking dot products of four vectors. A useful
way to remember this is:

Dot product = product of time components - sum of products of
space components

Just as the dot product of a 3-vector is a scalar, so here the dot product of
two 4-vectors is an invariant.

Notice that in equation (11) we wrote the index on the 4-vector above
the symbol, and the index on the metric tensor below the symbol. This is
important. In the tensor mathematics of spacetime, it is only permissable to
sum over a repeated index, if one of the two indices is up and one is down.
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The Lorentz transformation can also be done using matrix methods:

#
r

0
= ¤

#
r

where

¤ =

0
BB@

γ ¡γβ 0 0
¡γβ γ 0 0

0 0 1 0
0 0 0 1

1
CCA (12)

In index notation, we write
rµ = ¤µ

ν rν

Once we have established the correct mathematics for these 4-vectors, we can
write all of the physics of SR in a very compact form. The space-time interval
for a particle moving at velocity ~v = vx̂ is

ds2 = c2dt2 ¡ v2dt2 =
c2dt2

γ2

and if v = 0, ds = cdt. So the proper time is just

dτ =
ds

c
=

dt

γ

where ds is timelike. This motivates the definition of the 4-velocity. If we
di¤erentiate the 4-position with respect to the invariant proper time, we get

#
v =

d
#
r

dτ
=

γd

dt
(ct,~r)

= γ (c, ~v) (13)

where ~v is the usual 3-velocity measured in a specific reference frame. Now if
we apply the rule we have discovered for taking dot products of 4-vectors, we
get

#
v ¢ #

v = γ2
¡
c2 ¡ v2

¢
= c2

which is certainly an invariant!
The Lorentz transformation may be used to transform any 4-vector. Let’s

do the velocity transformation. Let ~u be the velocity of a particle in the unprime
frame. Then

#
u

0
=

0
BB@

γ ¡γβ 0 0
¡γβ γ 0 0

0 0 1 0
0 0 0 1

1
CCA

0
BB@

γuc
γuux

γuuy

γuuz

1
CCA

where
γ =

1p
1 ¡ β 2

, β =
v

c
and γu =

1p
1 ¡ u2/c2
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~v = vx̂ being the relative velocity of the two frames. Thus

#
u

0
=

0
BB@

γγu (c ¡ βux)
γγu (ux ¡ βc)

γuuy

γuuz

1
CCA =

0
BB@

γ 0
uc

γ0
uu0

x

γ 0
uu0

y

γ 0
uu0

z

1
CCA

So that, from the time component,

γ 0
u = γγu (1 ¡ βux/c) (14)

and from the x¡component

u0
x =

γγu (ux ¡ βc)

γ0
u

=
ux ¡ v

(1 ¡ βux/c)

in agreement with (9). I’ll leave it to you to check the perpendicular compo-
nents.

Once we see how to get the 4-vectors, the rest of physics gets easy. Re-
membering that the mass of a particle is an invariant, we may form the 4-
momentum

#
p = m

#
v = γm (c, ~v) = (γmc, ~p)

where the correct relativistic expression for the 3-momentum is ~p = γm~v. (See
LB p1089 for a proof of this.) The invariant magnitude of the 4-momentum,
squared, is

#
p ¢ #

p = γ2m2
¡
c2 ¡ v2

¢
= m2c2 =

E 2
0

c2
(15)

the square of the rest energy E0 = mc2 of the particle, divided by c2. This is
also an invariant, since both m and c are. The 4-momentum is

#
p =

µ
E
c

, ~p

¶

where the total energy of the particle is

E = γmc2 =
mc2

p
1 ¡ v2/c2

= mc2
µ

1 +
1

2

v2

c2
+

µ
¡1

2

¶ µ
¡3

2

¶
1

2!

v4

c4
+ ¢ ¢ ¢

¶

= mc2 +
1

2
mv2 +

3

8

v4

c4
+ ¢ ¢ ¢

= rest energy + Newtonian kinetic energy + relativistic corrections

We can verify this result as follows. First define the 4-acceleration

#
a =

d
#
v

dτ
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and the 4-force
#
F = m

#
a =

d
#
p

dτ

Then the dot product

#
F ¢ #

v = m
d

#
v

dτ
¢ #

v

=
m

2

d

dτ

³#
v ¢ #

v
´

=
m

2

d

dτ
c2 = 0

since c is a constant, independent of proper time. But if we do it using compo-
nents and coordinate time, we get

#
F ¢ #

v = mγ
d

dt
[γ (c,~v)] ¢ γ (c,~v)

= mγ2

µ
c
dγ

dt
,
d~p

dt

¶
¢ (c, ~v)

= γ2

µ
mc2dγ

dt
¡ ~v ¢ ~F

¶

Since we have already established that the dot product is zero, we get

P = ~F ¢ ~v =
d

dt

¡
γmc2

¢
=

dE
dt

(16)

The power expended by the force equals the rate of change of the particle’s
energy.

The momentum 4-vector allows us to combine two laws of physics— conser-
vation of energy and conservation of momentum— into one conservation law:
conservationof 4-momentum. For an isolated system,

#
p to tal,befor e =

#
p tota l, a fter

If we combine this with the invariance of
#
p ¢ #

p we can solve some interesting
problems quite easily.

The Bevatron at Berkeley was designed to produce antimatter through the
reaction

p + p ! p + p + p + p

where p is a proton and p is an antiproton. To what energy must a proton be
accelerated so that this reaction will produce antiprotons in a collision with a
stationary proton?

In the collision, both energy and momentum are conserved. In the lab
frame a proton with speed v collides with a stationary proton, and the reaction
products carry away the initial momentum γmv. For the energy required to be
a minimum, the reaction products have no internal energy, that is, each particle
has the same velocity ~vfina l. Viewed in the CM frame (center of momentum, in
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relativistic physics), the two protons approach with equal and opposite veloci-
ties, and the reaction products are at rest. We could do the problem using the
Lorentz transformation, transforming to the CM frame, but there’s an easier
way. We can calculate the invariant magnitude of the total 4-momentum in
the lab frame before the collision and in the CM frame after the collision.

energy momentum invariant E2 ¡ p2c2

incoming proton, lab frame γmc2 γmv
stationary proton, lab frame mc2 0

Total, lab frame mc2 (γ + 1) γmv
¡
mc2

¢2
(γ + 1)

2 ¡ γ2m2v2c2

reaction products, CM frame 4mc2 0
¡
4mc2

¢2

Thus, setting invariant totals before equal to totals after

¡
mc2

¢2
h
(γ + 1)2 ¡ γ2β2

i
= 16

¡
mc2

¢2

Thus

γ2
¡
1 ¡ β2

¢
+ 2γ + 1 = 16

2 (γ + 1) = 16

γ = 7

With γ = 7, the kinetic energy of the proton is

T = γmc2 = 7 (0.938 Gev) = 5.6 GeV

The betatron was designed to produce 6.4 GeV per proton.

2.4 Transformation law for ~F

The 4-force is
#
F =

d
#
p

dτ
= γ

d

dt

µ E
c

, ~p

¶
= γ

µ
1

c

dE
dt

, ~F

¶

where ~F is the 3-force, and, from (16) with ~β = ~u/c,

1

c

dE
dt

= ~β ¢ ~F

So
#
F = γ

³
~β ¢ ~F , ~F

´

Applying the Lorentz transformation

#
F

0
= ¤

#
F

So, with ¡ = 1/
p

1 ¡ v2/c2, and ~v = vx̂

γ 0F 0
x = ¡γ

³
Fx ¡ v

c
~β ¢ ~F

´
= ¡γ

³
Fx ¡ v

c
~β ¢ ~F

´

γ0F 0
z = γFz
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We have already found γ 0 (equation 14), so

F 0
x =

1¡
1 ¡ βx

v
c

¢
³
Fx ¡ v

c
~β ¢ ~F

´
(17)

If ~F is perpendicular to ~β in the unprime frame, then

F 0
x =

Fx¡
1 ¡ βx

v
c

¢ (18)

For the y and z components the transformation is

F 0
z =

Fz

¡
¡
1 ¡ βx

v
c

¢ (19)

In the special case that the particle is instantaneously at rest in the unprime
frame, then

F 0
x = Fx,

~F 0
? =

~F?
¡

3 Relativistic E&M

The transformation laws for electric and magnetic fields are interesting. Suppose
we have a uniform sheet of charge with uniform charge density σ lying in the
x ¡ z plane There is a constant electric field ~E = σn̂/2ε0 above the sheet. A
particle with charge q placed above the sheet experiences a force ~F = q ~E that
accelerates it away from the sheet.

If we now move to a reference frame moving with speed v parallel to the
sheet, ~v = vx̂, we see things di¤erently. In this frame there is a surface current
density ~K 0 = ¡σ0~v, and a magnetic field ~B = µ0

~K 0 £ n̂/2. The charge also
moves with a velocity ¡~v in this frame and thus experiences a force due to both
the electric and magnetic fields:

~F 0 = q
³

~E 0 + ~v0 £ ~B 0
´

= q

µ
σ0n̂

2ε0
¡ ~v £

µ
¡µ0σ

0~v £ n̂

2

¶¶

= q
σ0

2ε0

©
n̂ + µ0ε0

£
~v (~v ¢ n̂) ¡ n̂v2

¤ª

= q
σ0

2ε0
n̂

µ
1 ¡ v2

c2

¶
=

q

γ2

σ0

2ε0
n̂

The total charge Q on an area A = ` £ w in the unprime frame is the charge Q
on an area A0 = `0 £ w = `w/γ in the prime frame. So

σ0 =
Q

A0 = γ
Q

A
= γσ
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Thus
~F 0 =

q

γ

σ

2ε0
n̂

Since ~F is perpendicular to ~v, we may use relation (19) to compute ~F 0 from ~F :

~F 0 =
q

γ

σ

2ε0
n̂

The two expressions agree. What this shows is that an electric field in the
unprime frame transforms to a combination of electric and magnetic fields in
the prime frame. In this case ~E is perpendicular to ~v, and

~E0 = γ
³

~E + ~v £ ~B
´

(20)

~B 0 = γ
³

~B ¡ ~v £ ~E/c2
´

(21)

It turns out that the components of ~E and ~B parallel to ~v are unchanged.
It is interesting that the components of ~E and ~B get mixed together in the

transformation law. We can see from this that neither ~E nor ~B can be parts of
a four-vector, since the Lorentz transformation mixes up components of a single
vector but does not combine components of di¤erent vectors. We need a bigger
unit— a field tensor. A scalar (invariant) is a single number: 1 = 40 . A vector
has 4 components, so we need 41 numbers. The next object up the scale is a
rank 2 tensor with 42 = 16 components. We can write these numbers using a
4 £ 4 matrix. We can figure out what these components are by working from
the potentials. The scalar and vector potentials form a 4-vector potential:

#
A =

µ
V

c
, ~A

¶

and the 4-dimensional gradient vector is

#
¤ =

µ
∂

c∂t
, ¡~r

¶

so that the 4-divergence of the 4-vector potential is (using our rule for dot-
products)

#
¤ ¢

#
A =

∂V

c2∂t
+ ~r ¢ ~A = 0

This is the Lorentz gauge condition, and it is an invariant. This is what makes
the Lorentz gauge condition so useful: if it is true in one frame it is true in all.
Now

Bx =
³

~r £ ~A
´

x
=

∂Az

∂y
¡ ∂Ay

∂z

Bx = ¡¤2A3 + ¤3A2

while

Ex = ¡∂V

∂x
¡ ∂Ax

∂t
= c

¡
¤1A0 ¡ ¤0A1

¢

16



This suggests that we form our field tensor from the antisymmetric components

Fµν = ¤µAν ¡ ¤νAµ

This leads to

Fµν =

0
BB@

0 ¡Ex/c ¡Ey/c ¡Ez/c
Ex/c 0 ¡Bz By

Ey/c Bz 0 ¡Bx

Ez /c ¡By Bx 0

1
CCA (22)

The transformation law for this tensor is

F 0 = ¤F¤T

or
F 0µν = ¤µ

αFαδ¤ ν
δ

Verify that this rule reproduces equations (20) and (21).
Let’s look at the invariants we can form from this tensor. The dot product

of two vectors is
AµgµnAν = AµAµ

where g is the metric tensor, and

Aµ = gµνA
ν

is the so-called covariant vector formed from the vector
#
A.1 By analogy, we can

find the invariants
C1 = FµνgµξgνλF ξλ = F µν Fµν

or, in matrix notation,
Fµν =

¡
gF gT

¢
µν

and C1 is the sum of the products of all the elements of the two matrices.Since
the metric tensor is diagonal, g = gT , so

gF gT =

0
BB@

1 0 0 0
0 ¡1 0 0
0 0 ¡1 0
0 0 0 ¡1

1
CCA

0
BB@

0 ¡Ex/c ¡Ey/c ¡Ez/c
Ex/c 0 ¡Bz By

Ey/c Bz 0 ¡Bx

Ez/c ¡By Bx 0

1
CCA

0
BB@

1 0 0 0
0 ¡1 0 0
0 0 ¡1 0
0 0 0 ¡1

1
CCA

=

0
BB@

1 0 0 0
0 ¡1 0 0
0 0 ¡1 0
0 0 0 ¡1

1
CCA

0
BB@

0 Ex

c
Ey

c
Ez

c
Ex

c
0 Bz ¡By

Ey

c
¡Bz 0 Bx

Ez

c By ¡Bx 0

1
CCA

Fµν =

0
BB@

0 Ex
c

Ey

c
Ez
c

¡ Ex

c
0 ¡Bz By

¡ Ey

c
Bz 0 ¡Bx

¡ Ez
c ¡By Bx 0

1
CCA (23)

1 Note that the space components of the covariant vector have the opposite sign from
the space components of the contravariant (or usual) vector. Thus the covariant vector

¤µ =
³

∂
∂ct , ~r

´
.
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Comparing with (22), we see that the top row and first column have changed
sign. Thus

C1 = 2

µ
B2 ¡ E2

c2

¶

In an EM wave, B = E/c and so C1 = 0. Some fields are primarily magnetic
in character, C1 > 0. On the other hand, if C1 < 0, the fields are of electric
character.

A second invariant is found from the dual tensor which is created using the
4-d analogue of the Levi-Civita symbol.

Fµν = εµναβF αβ

C2 = FµνF
µν

The result is
C2 / ~E ¢ ~B

For an EM wave, this invariant is also zero.
If C1 > 0 and C2 = 0 there will be some frame in which ~B = 0. If C1 < 0

and C2 = 0 there is some frame in which ~E = 0. If C2 6= 0, there is no frame in
which either ~E or ~B is zero.

For the charged sheet we considered above, we have, in the lab frame,

C1 = 2

µ
0 ¡ σ 2

4ε2
0c

2

¶
= ¡ σ2

2ε2
0c

2
= ¡µ0σ

2

2ε0

C2 = 0

and in the prime frame

C1 = 2

"
µ2

0 (K 0)2

4
¡ (σ0)2

4ε2
0c

2

#

=
µ2

0 (σ0v)
2

2
¡ µ0

(σ0)2

2ε0

=

µ
µ2

0β
2c2

2
¡ µ0

2ε0

¶
γ2σ2

= ¡ µ0

2ε0

¡
1 ¡ β2

¢
γ2σ2 = ¡µ0σ

2

2ε0

and C2 is also zero since ~E0 is perpendicular to ~B 0.
The charge and current form another 4-vector:

#
j =

³
cρ, ~j

´

In the lab frame, for our sheet,

#
j = (cσδ (y) , 0)

18



Verify that the Lorentz transformation of this 4-vector correctly gives the charge
and current in the prime frame. Now we may write charge conservation com-
pactly as

#
¤ ¢

#
j = 0 =

∂cρ

∂ct
+ ~r ¢ ~j = 0

Finally we get Maxwell’s equations:

¤µF µν = µ0j
ν

and
¤µFµν = 0

The Lorentz force on a particle with charge q and 4-velocity
#
v is

F µ
L = qFµν vν = qFµνgναvα

Let’s verify this

qFµνvν = q

0
BB@

0 ¡Ex/c ¡Ey/c ¡Ez/c
Ex/c 0 ¡Bz By

Ey/c Bz 0 ¡Bx

Ez/c ¡By Bx 0

1
CCA

0
BB@

1 0 0 0
0 ¡1 0 0
0 0 ¡1 0
0 0 0 ¡1

1
CCA

0
BB@

γc
γvx

γvy

γvz

1
CCA

= q

0
BB@

0 ¡Ex/c ¡Ey/c ¡Ez/c
Ex/c 0 ¡Bz By

Ey/c Bz 0 ¡Bx

Ez/c ¡By Bx 0

1
CCA

0
BB@

γc
¡γvx

¡γvy

¡γvz

1
CCA

= q

0
BB@

Ex

c
γvx + Ey

c
γvy + Ez

c
γvz

Exγ + Bzγvy ¡ Byγvz

Eyγ ¡ Bzγvx + Bxγvz

Ezγ + Byγvx ¡ Bxγvy

1
CCA

= qγ

0
BBBBB@

~E ¢ ~β
Ex +

³
~v £ ~B

´
x

Ey +
³
~v £ ~B

´
y

Ez +
³
~v £ ~B

´
z

1
CCCCCA

Apart from the factor of γ, the 3-vector part of this 4-vector is the non-relativistic
expression for the Lorentz force, while the zeroth component is the power, as
usual.

4 Motion of a charged particle in a uniform elec-
tric field

In Newtonian mechanics, a charged particle in a uniform field experiences a
constant force ~F = q ~E and accelerates at a constant rate forever. Its speed

19



increases without limit. But Einstein told us that this can’t happen. The
particle’s speed cannot exceed c. Let’s see how the mathematics enforces this
result. The secret is to use proper time. Then the force law is

Fµ
L =

dpµ

dτ

If we put the x¡axis along the direction of the electric field and the y¡axis so
that the particle’s initial velocity is in the x ¡ y¡plane, then the equations are:

0-component

qγ ~E ¢ ~β =
d

dτ

µ
E
c

¶

γqE
vx

c
=

d

dτ
(γmc)

1-component

qγE =
d

dτ
px =

d

dτ
(γmvx)

2-component

0 =
dpy

dτ
=

d

dτ
(γmvy)

3-component

0 =
dpz

dτ

The last two equations tell us that py and pz are each constant. But since pz

is initially zero, it stays zero and we need not consider it further. The first two
equations may be simplified by di¤erentiating again. First, define ­ = qE/mc.
Then

d2

dτ2
(γc) =

d

dτ
(­γvx) = ­2γc

The solution for γ is
γ = Ae­τ + Be¡­τ

where

A + B = γ0 =
1p

1 ¡ v2
0/c2

Then

γvx =
c

­

d

dτ
γ = c

£
Ae­τ ¡ Be¡­τ

¤

Suppose the particle is moving perpendicular to ~E at t = τ = 0. Then

A = B =
γ0

2

So

γ = γ0 cosh ­τ

vx = c tanh­τ
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Then finally
γmvy = γ0mv0

so
vy =

v0

cosh ­τ
For short times, ­τ ¿ 1, we have

vx = ­cτ

and the speed increases linearly in time, with vy remaining constant. But for
­τ large, we find tanh­τ ! 1, and so vx ! c and vy ! 0. The latter result
is initially surprising, since there is no force in the y¡direction. But since
the particle’s γ is continuously increasing, and the momentum component stays
fixed, the velocity component must decrease.

To express the results in terms of coordinate time, we integrate again. The
0¡component of the 4-velocity is

γc =
d

dτ
(ct) = γ0c cosh­τ

Thus
t =

γ0

­
sinh ­τ

where we set the integration constant to zero so that t = 0 when τ = 0. Then
for ­τ ¿ 1, , t = γ0τ, but for ­τ À 1,

t =
γ0

2­
e­τ

and

vx = c
­t/γ0q

1 + (­t/γ0)
2

vy =
v0q

1 + (­t/γ0)
2

The graph shows βx (black) and βy (red) versus ­t/γ0, with βy = 0.5 at t = 0.
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