Physics 460 Notes Fall 2006 Susan M. Lea

1 Dipole radiation

Electromagnetic waves are produced by accelerating charges, as we have seen.
But when lots of charges are involved it is sometimes easier to work with the
charge and current distributions. There is no radiation unless these distribu-
tions change in time. We’ll start with a few simple cases. The first is an ideal
dipole that oscillates in time:

P (t) = po coswt

We can create such a source by having a point charge undergo simple harmonic
motion, for example. Following Gri¢ths, we look at the simpler case of two
equal and opposite charges fixed in position at z = +d/2, but with a time-
dependent charge

q (t) = qo cos wt

Then the dipole moment is
P = qodZ cos wt = Py cos wt

Now we calculate the potentials due to this source using equations (9) and (10)
from Notes 4. We will make several simplifying assumptions.

1. d < r. The source dimension is much less than the distance to the source.

2. wd/c < 1 The dipole oscillates slowly, or equivalently, its length is much
less than a wavelength.

3. wr/c > 1. The distance from the source to the observer is much greater
than a wavelength.

Then the potential is
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where, using approximation 1, d < r, we have
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Then we apply the second approximation wd/c < 1 and expand the cosine to
first order in wd/c
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In the limit w — 0 (static dipole) the potential is

vV po cos B
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as expected. However, using approximation 3, we find that the second term
dominates, and
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The vector potential is due to the current, which exists everywhere along
the line between the two charges.
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We’ll need the distance
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The second term integrates to zero (odd integrand over even interval) so the
next non-zero term would be of order (wd/c) (d/r) and we neglect it.
Now that we have the potentials (1) and (2), we calculate the fields.
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where the terms we dropped are of order ¢/wr with respect to the one we kept.
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The magnetic field is
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A has only r and # components and each depends only on r and 6, so B has

only a ¢ component:
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Again the first term is much larger than the second, so we have
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Comparing the two expressions (3) and (4) we see that
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as we expect for an EM wave. The Poynting flux is
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The 1/r2 dependence on distance is also what we expect. Now we time average

to get
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The total power radiated goes like the frequency to the 4th power and the square
of the dipole moment. The angular distribution of power (equation 5) goes as
sin®#. With the polar axis plotted to the right, it looks like this:

This is a special case of our point charge radiation formula, because we can
model the dipole with an oscillating charge, and so it is no surprise that we get
the same angular dependence.

2 Magnetic dipole radiation

An oscillating current in a circular loop of radius b is a good model for an
oscillating magnetic dipole. With I (¢) = Iy coswt,

m (t) = 7?1 (t) i = 7b? I coswt N = 1mg cos wit
The loop is uncharged, and so we have only a vector potential:
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We have to take care with the unit vector, since it is not a constant. So we
convert to Cartesian unit vectors:
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We also need an expression for R :
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We may place the z—axis so that the observation point is in the x — z—plane,,
as shown in the diagram Then
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where the first term has integrated to zero. The x—component also integrates
to zero, since we have [ sing’ cos¢’d¢’ = [7" sin2¢'d¢/ = 0. Thus A has only
a y—component:
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and finally we get the fields:
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We chose a special location for the z—axis, but we can see from the diagram,
that for this point
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So, more generally,
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The expression (8) looks a lot like (6), but actually the magnetic dipole radiation
is much weaker. We can see this by going back to the expressions for py = god
and my = wb?Iy, and remembering that the current in the electric dipole case
had amplitude Iy = wqy. Thus, if d ~ b,
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