Physics 460 Fall 2006 Susan M. Lea

1 Potentials for Dynamic fields

We have spent the last few weeks discussing the propagation of electromagnetic
waves, so how it is time to think about how the waves are produced. We have
already shown that we can express the fields in terms of the scalar and vector
potentials:
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By inserting these expressions into Gauss’ Law and Ampere’s law, we can show
how the potentials are related to the sources:
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Expand the term on the left, to get:
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We can rearrange a bit, to get
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The left hand side of this equation is nice: it has the wave operator operating
on A, and the right hand side has the source j of A, but there is an additional
term that spoils it. But now we recall that V and A are not unique. Since
the curl of a gradient is zero, we can add the gradient of a scalar to A without
changing B
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Then for the new E field we have:
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So to get the same E we need a new V :
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Equations (4) and (5) guarantee that the fields are the same whether we use
the unprime or prime potentials. They describe the Gauge transformations for
the fields.

Knowing that we have this flexibility, we can choose the potentials so that
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For suppose this is not true. Then we apply a Gauge tranformation, and require
that the new potentials satisfy equation (6). Then
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So we have a prescription for finding the necessary x. In fact any two dicerent

values of y that dicer by a solution of the homogeneous wave equation are

equally valid. Equation (6) is the Lorentz Gauge condition. Choosing this

gauge, the equation for A'is a wave equation with source J :

+ﬁ-/f)

1 9?4 L
i VA = @)

Then putting the gauge condition into the equation (3) for V, we have:
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Thus each Cartesian component of A and the scalar potential V' satisfy similar
equations: a wave equation with source equal to a component of ; (for A) or
the charge density p (for V).

Because of this nice symmetry (and some other reasons we’ll discuss when
we study relativity) the Lorentz gauge is particularly useful for calculating wave
fields. But it is not the only choice. We could use the Coulomb gauge
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which gives a very simple equation for V. In fact it is the same equation as
when the sources are time independent:
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This is rather odd, however, because it means that as we change p, the potential
changes instantly everywhere in the universe! This defies all of our expectations
about causality. The equation for A is also rather ugly:
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There are ways to simplify this (see Physics 704) but we still have to deal with
the acausal nature of V. In classical physics the potentials are merely useful
tools for calculating £ and B, and it turns out tha the physical fields £ and
B don’t change everywhere at once, but obey the expected rules that signals
travel at ¢. For now, however, let’s stick with Lorentz gauge.

The wave equations we have found show that electromagnetic signals travel
at the speed of light. If a source 1 km from me changes its magnitude at time
to, | won’t know about it until time ¢ = to + 1000 m/(3 x 10® m/s) = to + 30
us. Another way of saying this is that the charge density that determines V'
at my position is the charge density 30 us ago. We can formalize this idea by
noting that we must use the charge density at the retarded time:
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to get the potential at time ¢. Using this idea, we guess that the correct expres-
sion for potential is
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where, as usual,

Equation (9) is the retarded potential. Let’s check that it works by stu&ng
into the wave equation. We have to be careful in taking the space derivatives
because 7 appears in R and R appears in p as well as in the denominator. We
use the chain rule to take the derivatives of p.
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Thus

<l

V [ p(@.t— R/

-(ﬁv):€~®m0

1 -

. Tre / {p (f“,tret) \Y%

L / (7 tret) V
Areq P\T ;lret

1
S T, +Ty) dr’
471'50 ( 1+ 2) T

<lu

<.
= ==

R

ﬂp (7, tret)} dr’

+

I=v] B

L
Rc

d

14 (Flytret)
Otret

!
T

6R} dr’

Now we take the next derivative. The first term in the integrand is
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Putting it all together, the first order time derivatives cancel:
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Thus we have retrieved equation (8).
Similarly, the solution for A4 is
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It remains to show that these potentials also satisfy the Lorentz gauge condition.
See problem 10.8

The retarded potentials (9) and (10) are often easier to write down than they
are to use. But we can calculate the potentials in some simple cases. Imagine
that we could set the current up everywhere in an infinitely long wire at time
t =0. (I don’t know how we’d do this, but let’s pretend.)

I = 0 t<0
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Then V = 0 since p = 0 everywhere, (notice that V.7 =0,s0 if p is zero at any
time it stays zero), and, with z—axis along the wire:
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The current function is zero unless tet =t — R/c > 0, so we need
Rz\/32+(z—z’)2 <ct
This condition restricts the range of integration:
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or
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Note that s < ct is also required, so that the square root is real.
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Note that the result is independent of z, as we would expect?.
Now we can find the fields:
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1This is not quite the same as Gri¢ths’ result. The two dicer by a gauge transformation.
Try to fix up Gri¢th’s sloppy derivation by putting in the necessary sentences!




In the second form it is easier to check that the result is dimensionally correct.
The term with the 5—function is zero because when s = ¢t the log is In (1) = 0.
Finally we get B :
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w5l

— 0
MOIU
27s

sel}

¢

—

2 Fields due to a moving point charge
2.1 Potentials

One of the important applications of the retarded potentials is to calculate the
fields due to a moving point charge. The charge is located at a point with
position vector ry (t), where its velocity is
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and its acceleration is

L dv

T

The charge density is then

p(Ft) =qd (7= 7o (t))
and the current density is
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The potential at a point P with position 7p at time ¢ is due to the charge at
position 7 (tret). Thus tret is determined by the equation
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To get the potential we back up one step and write:
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We do the integral over the volume (in primed variables) first, to get
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We can do the integral if we can get the delta function into the form
0 (¢ — something independent of ¢/) . It is not in that form yet, because te¢
contains 7 (t') . We have §[f (t')] where
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Thus the potential looks exactly like the potential due to a static point charge
except that 7y now changes with time, and must be evaluated at ¢re¢, and there
is an extra geometric factor 1 — v- R/c in the denominator. When the speed
of the charge approches the speed of light, this factor makes the potential very
large at points where - R/c ~ 1, that is, where R is parallel to .

To understand why this factor appears, consider the observed volume of a
train travelling at speed v, as shown in the diagram.
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Light from the front of the train leaves the train at time ¢, and reaches the
observer at time 7' where T' — ¢, = R/c. If light from the rear is to reach the
observed at the same time, it has to start earlier, at time ¢;, but then the rear
of the train was father back along the tracks, where L' — L = v (¢, — t;) and
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Then the observed volume of the train is
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The geometrical factor in the denominator here is exactly the same as the factor
in the potenial (12).

The integral we need to do to get A is the same as for V, so together we have
the Lienard Wiechert potentials:
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where the whole expression is evaluated at the retarded time. As v — 0 we get
back the usual result for a stationary charge.



2.2 Fields due to a moving charge.

To get the fields from the potentials we use equations (1) and (2), This is not
an easy task because ¢t depends on the spatial coordinates.

2.2.1 Non-relativistic limit:

In Lorentz Gauge, the fields are found using
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But our expressions for the potentials are in terms of & and ¢, not & and ¢,
so we have to be very careful in taking the partial derivatives. We can put
the origin at the instantaneous position of the charge to simplify things. Then
R = r. Our potential may be written:
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In the non-relativistic limit, v/c < 1, to zeroth order in v/c, this is
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and again taking the non-relativistic limit, this becomes:
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The first term is the usual Coulomb field. The other two terms depend on a:
these are the radiation field.
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Next let’s calculate the magnetic field:
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where again we have negelected terms of order v/ccompared with those retained.
The first term is the usual Biot-Savart law result. The second term is the
radiation field:
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Notice that . .
Eyag = cBrag X 7

as expected for a plane wave.
The Poynting flux is:

. 1 - - 14 Px E
§ - _ExB__EX<” )
C

where from equation 25:

and 6 is the angle between @ and #. Thus
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and the power radiated per unit solid angle is:
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This result is called the Larmor formula.

2.2.2 Relativistic "brute force" caculation, as per Gridths

Ths is tough. However, we did some of the work already in finding the poten-
tials. First let’s look at the gradient:
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where .
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where we used product rule (4) from the front cover of G with A=B=R.
Thus, again using (19), we have
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So, putting the pieces together, we get
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Thus the electric field has two terms. The first goes as 1/R?, and in the limit
v < ¢ becomes the usual Coulomb field
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The second term is
e proportional to the acceleration
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This term is the radiation field.
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Before we comment further on these terms, let’s work on B.
B = VxA=Vx(Vd)
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So, making use of our previous results, we get
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Again we get a term in 1/R?. This is the Biot-Savart law field.
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The radiation field is again proportional to a and to 1/R :
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In the last step we added a term proportional to R x R, which is identically
zero. Thus
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2.2.3 Properties of the Coulomb fields
It’s interesting to see what happens to the Coulomb fields as v approaches c.
Let’s look at £ (equation 24).
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Since R is positive, we need the plus sign. (Check the limit v — 0.) Then
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Thus the field is concentrated in the direction s, and becomes very large as v
increases. A stationary observer sees a pulse of field as the charge moves past.

2.2.4 Properties of the radiation fields

The radiation field decreases more slowly with distance than the Coulomb field,
so at large distances, the radiation field dominates. The Poynting vector de-
scribes the energy radiated:
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From equation (25), we see that R- ﬁ,ad =0, and then
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In the non-relativistic case, v < ¢,
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where 6 is the angle between R and &@. Notice that S 1/R%. This is the usual

inverse square law for light. We can compute the power radiated per unit solid
angle:
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This is the Larmor formula for power radiated. The power is proportional to the

square of the particle’s acceleration. Notice that no power is radiated along the

line of the acceleration (9 = 0) and power radiated is maximum perpendicular
to the acceleration. See LB page 763.

The total power radiated is
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Let 4 = cos 6. then
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There are some interesting and important corrections when the motion is
relativistic. Most importantly, the total power radiated is increased signifi-
cantly, and it is also strongly beamed in the direction of the particle’s velocity
. With the relativistic factor ~ defined as

1
= V1—1v?/c?

so that v ~ 1 corresponds to non-relativistic motion, and v — oo asv — ¢, we

find that
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and the radiation is emitted within a cone of opening angle of about 1/~ around
the direction of v. The derivation of these results is not easy, and we shall omit
it.

(29)

20



