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1 Waves— basics

1.1 The wave equation for a string

Waves occur in many physical systems. A wave is a disturbance that propagates
through the system at a well-determined speed that depends on the physical
properties of the system. All wave disturbances may be decomposed into a sum
of simpler waves- sinusoidal waves. In these waves, the shape of the disturbance,
captured by taking a snapshot of the disturbance in the medium at a fixed time,
has the shape of a sine wave. Every point of the system oscillates in time. Thus
we might expect that the system has restoring forces that try to return the
system to its initial equilibrium. We’ll begin by studying a simple mechanical
system— a string. The restoring force is the tension in the string.

In equilibrium the string lies along the x¡axis. We look at a di¤erential
piece of the displaced string, as shown in the diagram.

The net force on the string has components:

dFx = T (x + dx) cos (θ + dθ) ¡ T (x) cos θ

dFy = T (x + dx) sinθ ¡ T (x) sinθ

Now let the displacement of the string be small everywhere, fo that θ ¿ 1
everywhere. Then

cos θ = 1 ¡ θ2

2
+ ¢ ¢ ¢ ' 1

sinθ = θ ¡ θ3

6
+ ¢ ¢ ¢ ' θ

and

dFx = T (x + dx) ¡ T (x)

dFy = T (x + dx) (θ + dθ) ¡ T (x) θ
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Each piece of the string moves vertically but not horizontally, so

dFx = 0 ) T (x + dx) = T (x)

The tension is constant along the string. Then the y¡component is

dFy = T dθ = (dm)
∂2y

∂t2

The time derivatives are partial derivatives: we are looking at a fixed value of
x. The mass of the string segment is

dm = µdx

The string has to stretch a bit in order to curve, but the mass per unit length
µ is measured along the undisturbed string. Thus

Tdθ = µdx
∂2y

∂t2

or
∂2y

∂t2
=

T

µ

∂θ

∂x

The x¡derivatives are also partial because the picture shown is a snapshot
taken at a fixed time. Now we work on the angle θ. The slope of the string is

tanθ =
∂y

∂x
' θ for θ ¿ 1.

Thus
∂2y

∂t2
=

T

µ

∂2y

∂x2
(1)

This is the wave equation for the string. The wave speed is given by

v2 =
T

µ

and v is roughly equal to the square root of the restoring force/inertia. The
general solution to this equation has the form

y = f (x § vt)

as you can easily check by di¤erentiating and stu¢ng in. With the minus
sign, the solution represents a wave propagating in the direction of increasing x,
with the plus sign the pulse propagates in the direction of decreasing x. Since
the wave equation is linear, we can have superpositions of such solutions, for
example

y = f (x + vt) + g (x ¡ vt)

Sinusoidal waves occur when f is a sine (or cosine) wave.

y = A cos [k (x ¡ vt) + φ] = A cos (kx ¡ ωt + φ)
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At fixed t, the cosine repeats after a distance ¢x where

k¢x = 2π

or

¢x =
2π

k
= λ

where λ is the wavelength of the wave. Similarly, at fixed x, the cosine repeats
after a time

¢t =
2π

ω
= T

where T is the wave period. Also

ω

k
= v

A is the wave amplitude. It is the maximum value of the disturbance anywhere
in the wave. φ is a phase constant. It tells us where the maximum displacement
occurs at t = 0.

The speed v is the phase speed of the wave. The wave phase is the argument
of the cosine. So a fixed phase φ0 corresponds to

kx ¡ ωt + φ = φ0

or

x =
ω

k
t +

φ0 ¡ φ

k
= vt +

φ0 ¡ φ

k

so if k is positive, the value of x corresponding to phase φ0 increases at speed v.
Standing waves occur when equal amplitude waves travel in opposite direc-

tions:

ystand = A cos (kx ¡ ωt) + A cos (kx + ωt + φ)

= 2A cos

µ
kx +

φ

2

¶
cos ωt

Now we have a fixed spatial function that oscillates in time.

1.1.1 More math makes it easier

We can use complex numbers to make the math easier. Euler’s formula tells us

eiθ = cos θ + i sinθ

Thus

A cos (kx ¡ ωt + φ) = Re A exp(i [kx ¡ ωt + φ])

= Re
n¡

Aeiφ
¢ ³

ei(kx¡ωt)
´o

= Re
³

eAeikx¡iωt
´
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where
eA = Aeiφ

is the complex amplitude of the wave. With this notation, the general solution
of the wave equation may be written:

f (x, t) =

Z +1

¡1
eA (k) eikx¡iωtdk

where
ω = kv

The "Re " is implied but is not always written. Real physical quantities are
always the real part of complex numbers.

1.2 Boundary conditions: reflection and transmission
When a wave reaches a point where the properties of the system change, part of
the wave energy will be reflected and part transmitted into the new region. In
the case of 1-D waves on a string, the mass/unit length µ is the critical system
property, As µ changes, so does v :

v1 =

s
T

µ1

; v2 =

s
T

µ2

and thus
ω1

k1
= v1;

ω2

k2
= v2

The disturbance on the string has three components: the incident wave yi =
A exp (ikix ¡ iωt), the reflected wave travelling in the negative x¡direction,
yr = Ar exp (¡ikrx ¡ iωrt) and the transmitted wave yt = At exp (iktx ¡ iωtt).
The first two travel at speed v1 while the transmitted wave travels at speed v2.
The amplitudes of the reflected and transmitted waves are determined by the
boundary conditions at the junction between the strings. To determine the two
amplitudes, we need two boundary conditions. They are:

(1) The string displacement is continuous across the junction. If
this were not true, the string would have an unphysical "break" at the junction.
For simplicity, we place the origin at the junction between the strings.

yi (0, t) + yr (0, t) = yt (0, t)

A exp (¡iωt) + Ar exp(¡iωrt) = At exp(¡iωtt)

This boundary condition must hold for all times t. Thus it must be true that

ω = ωr = ωt

The frequency of all the waves is the same. Then it follows that

A + Ar = At (2)
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and also
kr =

ω

v1
= ki ; kt =

ω

v2

(2) The slope of the string is continuous across the junction. If
this were not true, there would be unbalanced forces on the junction that would
cause rapid acceleration, rapidly restoring the force balance and the continuity
of the slope. (Be careful here– if the strings are tied together so that there is a
massive knot at the junction, then there may be a discontinuity of slope. This
is not the usual case.)

ikiAe¡iωt ¡ ikrAte
¡iωt = iktAte

¡iωt

The exponentials cancel, leaving

A

v1
¡ Ar

v1
=

At

v2
(3a)

From equations (2) and (3a) we can solve for the amplitudes:

A ¡ Ar =
v1

v2
(A + Ar)

A

µ
1 ¡ v1

v2

¶
= Ar

µ
1 +

v1

v2

¶

Ar = A
v2 ¡ v1

v2 + v1
(4)

and

At = A

µ
1 +

v2 ¡ v1

v2 + v1

¶

= A

µ
2v2

v2 + v1

¶
(5)

Note that if v2 = v1, there is no junction, and Ar = 0, At = A, as expected.
If the second string is heavier than the first, µ2 > µ1, then v2 < v1 and Ar is
negative. Recall that these amplitudes are complex numbers, so

Ar = ¡A
v1 ¡ v2

v2 + v1
= eiπA

v1 ¡ v2

v2 + v1

The reflected amplitude has a phase di¤erence of π compared with the incident
amplitude. Taking the real part,

yr = jAj v1 ¡ v2

v2 + v1
cos (¡ikrx ¡ ωt + π)

and the wave has a phase change of π. The reflected wave is flipped "upside
down".

Boundary conditions like this (continuity of function, continuity of deriva-
tive) apply in most physical systems.
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1.3 Polarization
The waves on the string are transverse waves: the string itself moves perpen-
dicular (in the y¡direction) to the direction that the wave itself moves (the
x¡direction). The wave is said to be polarized in the vertical (y) direction.
We could also set the string vibrating so that it moves in the z¡direction and
we would say the wave is polarized in the z¡direction. Or we could choose any
direction in the y ¡ z plane. These are linearly polarized waves. Now suppose
we set the string vibrating in the y¡direction, and a quarter period later we also
set it going with equal amplitude in the z¡direction. The total displacement
is

~s = A

½
ŷ exp (ikx ¡ iωt) + ẑ exp

·µ
ikx ¡ iω

µ
t ¡ T

4

¶¶¸¾

= Aeikx¡iωt
³
ŷ + ẑeiπ/2

´

= Aeikx¡iωt (ŷ + iẑ)

Now we take the real part:

~s = A [ŷ cos (kx ¡ ωt) ¡ ẑ sin (kx ¡ ωt)]

Fix attention at one point of the string — say x = 0, then we have

~s (0, t) = A (ŷ cos ωt + ẑ sin ωt)

Now the string moves around a circle of radius A in the y ¡ z¡plane. This is
circular polarization.

Contrast the string with waves on a spring— these are longitudinal waves—
the spring coils travel back and forth along the spring- the same direction that
the wave moves. The concept of polarization does not arise for these waves.

1.4 Energy transmission

As the wave travels along the string, it transmits energy. We can see how the
energy is related to the wave properties by looking at the rate at which the
string to the left of a point x = x0 does work on the string to its right. The
string to the left exerts a force ~T on the string to the right, and at the point of
contact the string has velocity

~v = ŷ
∂y (x0, t)

∂t

Thus

P = ~T ¢ ~v = ¡T sinθ
∂y (x0, t)

∂t

But since the string has small displacement, θ ¿ 1,

sinθ ' tanθ =
∂y

∂x
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So, with y = A cos (kx ¡ ωt)

P = ¡T
∂y

∂x

¯̄
¯̄
x0

∂y (x0, t)

∂t

= T kA sin (kx0 ¡ ωt)ωA sin (kx0 ¡ ωt)

= µvωA2 sin2 (kx0 ¡ ωt)

Since the sine function is squared, the power is always positive; energy is trans-
mitted to the right continuously— this is the direction in which the wave is
propagating. The power depends on the square of the wave ampliude— doubling
the amplitude quadruples the energy transmitted—and also depends on the wave
speed and the wave frequency.

2 Electromagnetic waves in vacuum

Maxwell’s equations in vacuum are (ρ = 0, ~j = 0)

~r ¢ ~E = 0 (6)
~r ¢ ~B = 0 (7)

~r £ ~E = ¡∂ ~B

∂t
(8)

~r £ ~B = ε0µ0

∂ ~E

∂t
(9)

Even though ρ and ~j are zero, the fields are not necessarily zero, because chang-
ing ~B acts as a source of ~E, and changing ~E acts as a source of ~E. The resulting
fields are wave fields that travel at the speed of light. To demonstrate this,
let’s try to eliminate one of the fields. Start with Ampere’s law (9) and take
the curl:

~r £
³

~r £ ~B
´

=
1

c2
~r £ ∂ ~E

∂t

~r
³

~r ¢ ~B
´

¡ r2 ~B =
1

c2
∂

∂t

³
~r £ ~E

´

Now use equation (7) on the left and Faraday’s law (8) on the right:

¡r2 ~B = ¡ 1

c2

∂2 ~B

∂2t

so we obtain the wave equation with wave speed c :

r2 ~B =
1

c2
∂2 ~B

∂2t
(10)
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The equation for waves on a string (1) was 1-dimensional in the space variables,
but here we have the r2 operator, so we have derivatives in all 3 space variables.

µ
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

¶
~B =

1

c2

∂2 ~B

∂2t

The waves are not constrained to move in one direction, but can move along
any line in space, described by the wave vector ~k. The magnitude of this vector
is related to the wavelength, as with 1¡D waves.

k =
¯̄
¯~k

¯̄
¯ =

ω

c
=

2π

λ

The speed of the waves in vacuum is

c =
1

p
ε0µ0

= 3 £ 108 m/s

EM waves occur at all frequencies. The names we give the waves are historical
and reflect the methods we use to detect them. They range from gamma rays at
very high frequencies to low frequency radio. See G page 377 and LB page 533.
Visible light occupies a small fraction of the spectrum around ν =1014 ¡ 1015

Hz (or, λ = 400-700 nm)
The electric field satisfies the same equation, as we can see by starting with

Faraday’s law:

~r £
³

~r £ ~E
´

= ¡~r £ ∂ ~B

∂t

~r
³

~r ¢ ~E
´

¡ r2 ~E = ¡ ∂

∂t

³
~r £ ~B

´
= ¡ ∂

∂t

Ã
ε0µ0

∂ ~E

∂t

!
(11)

r2 ~E =
1

c2

∂2 ~E

∂t2

2.1 Monochromatic plane waves

The term "monochromatic" or "single-color" means that the wave has a single
frequency ω. This is an idealization, of course, but it greatly simplifies our
math. The wave is plane if a surface of constant phase is a flat plane. Let’s
choose to put the z¡axis along the vector ~k, so that the wave is travelling in
the z¡direction. Then we can write the waves as:

~B = ~B0 exp (ikz ¡ iωt)

~E = ~E0 exp (ikz ¡ iωt)

Stu¢ng into Gauss’ law, we have

~r ¢ ~E = ikE0,z exp (ikz ¡ iωt) = 0
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This can be satisfied only if k = 0, which makes no sense, or E0,z = 0. Thus
~E0 has no z¡component, and ~E is perpendicular to ~k. Since ~r ¢ ~B is also zero,
we get the same result for ~B0. Since both field vectors are perpendicular to the
direction of wave propagation, EM waves in vacuum are transverse waves. Now
let’s put the x¡axis along the directionof ~E0. From Faraday’s law, we get

~r £ ~E = ~r £ [E0x̂ exp (ikz ¡ iωt)]

= ŷ
∂

∂z
[E0 exp (ikz ¡ iωt)] = ikE0ŷ exp (ikz ¡ iωt)

= ¡ ∂

∂t
~B0 exp(ikx ¡ iωt) = iω ~B0 exp(ikx ¡ iωt)

Thus we get

~B0 =
k

ω
E0ŷ =

E0

c
ŷ (12)

Thus the magnetic field is perpendicular to the electric field, has magnitude
E0/c, and the wave amplitude has the same phase as the ~E¡wave amplitude.
Since ~E is perpendicular to ~B, by convention we choose the electric field vector
to give the direction of polarization. This wave is polarized in the x¡direction.

We can write all of this in a coordinate-free form. If the wave propagates
in direction k̂ , the dot product k̂ ¢ ~r gives the distance along the direction of k̂,
so we replace kz with kk̂ ¢ ~r = ~k ¢ ~r. Thus

~E = ~E0 exp
³
i~k ¢ ~r ¡ iωt

´

~B = ~B0 exp
³
i~k ¢ ~r ¡ iωt

´

where, from the divergence equations,

~k ¢ ~E0 = ~k ¢ ~B0 = 0

and from the curl equation

~r £ ~E0 exp
³
i~k ¢ ~r ¡ iωt

´
= x̂

µ
∂

∂y
Ez ¡ ∂

∂z
Ey

¶
+ ŷ

µ
∂

∂z
Ex ¡ ∂

∂x
Ez

¶
+ ẑ

µ
∂

∂x
Ey ¡ ∂

∂y
Ex

¶

= [x̂ (ikyE0,z ¡ ¡kzE0y) + ŷ (ikz E0,x ¡ ikxE0,z)

+ẑ (ikxE0,y ¡ ikyE0x)] exp
³
i~k ¢ ~r ¡ iωt

´

= i~k £ ~E0 exp
³
i~k ¢ ~r ¡ iωt

´
= ¡ ∂

∂t
~B0 exp

³
i~k ¢ ~r ¡ iωt

´

= iω ~B0 exp
³
i~k ¢ ~r ¡ iωt

´

Thus
~k £ ~E0 = ω ~B0 (13)
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2.2 Energy and momentum in EM waves
The energy density in the waves fields is

u =
1

2

µ
ε0E

2 +
B2

µ0

¶

=
ε0

2

¡
E2 + c2B2

¢

But since we already showed that B = E/c, there is equal energy in the electric
and magnetic components of the wave.

u = ε0E
2 = ε0E

2
0 cos2

³
~k ¢ ~r ¡ ωt + φ

´

The Poynting vector describes the flux of energy:

~S =
1

µ0

~E £ ~B =
1

µ0

~E £
Ã

~k £ ~E

ω

!

=
1

ωµ0

h
~kE2 ¡ ~E

³
~k ¢ ~E

´i

But ~k ¢ ~E = 0, so

~S =
E2

cµ0

k̂ =
ε0E

2

cµ0ε0
k̂ = cuk̂

This shows explicitly that the energy density in the wave is carried along at the
wave speed c.

If we average over several (or many) wave periods, we get the time averaged
transmitted power per unit area of the wavefront:

< P > =
1

2c
ε0E

2
0

As with waves on a string, the power goes as the square of the wave amplitude,
depends on the wave speed c, and also on the properties of the medium, here
ε0. Physicists call this quantity the wave intensity. Astronomers beware — the
term intensity in astronomy means something di¤erent.

The waves carry momentum as well as energy: From Notes 2 equation 6, the
average momentum flux density is

< ~PE M > =
< ~S >

c

Now if the wave energy is absorbed at a flat screen, momentum is also aborbed,
and thus there is a force exerted on the screen. The force, from Newton’s
second law, is

~F =
d~p

dt
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and the pressure on the screen is the normal force per units area. If the wave
strikes the screen at normal incidence, then

P =
jF j
A

=

¯̄
¯< ~S >

¯̄
¯

c
=

E2

2c2µ0

=
1

2
ε0E

2

If the screen reflects all the energy and momentum, then the momentum im-
parted to the screen is twice as big:

Before reflection after reflection
Momentum in wave ~pin ~pout = ¡~pin

Momentum in screen 0 ~pscreen

Total ~pin ~pscreen ¡ ~pin

Setting the total before equal to the total after, we get

~ps creen = 2~pin

Things get more interesting when the wave is incident at an angle θ. (See LB
"Digging Deeper" pg 1049.)

Momentum in direction k̂ at angle θ to the surface normal n̂ is carried by
the wave. Only the normal component is absorbed or reflected:

pnorm al = p cos θ

The momentum in area dA? of the wave impacts area dA of the surface, where

dA? = dA cos θ
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Thus the momentum absorbed per unit area is

¢pnorm

¢A
=

p cos θ

dA?/cos θ
=

p

dA?
cos2 θ

Thus the radiation pressure is

P =
f

2
ε0E

2 cos2 θ

where the factor f = 1 for total absorption and = 2 for total reflection.

3 Electromagnetic waves in matter

When waves propagate in matter, there are non-zero sources ρ and ~j that must
be included in Maxwell’s equations. These sources a¤ect the speed and other
properties of the waves. Here we will discuss LIH materials that can be de-
scribed by the fields ~D and ~H, thus allowing us to "bury" the bound charges.
Then if the free charge density and free current density are zero, the equations
are:

~r ¢ ~D = 0 = ε ~r ¢ ~E (14)
~r ¢ ~B = 0

~r £ ~E = ¡∂ ~B

∂t

~r £
~B

µ
= ~r £ ~H = ε

∂ ~E

∂t
(15)

We find the wave equation using the same methods as before. Comparing these
equations with equations (6) to (9), we see that the only di¤erence is that ε0

has been replaced by ε and µ0 has been releced by µ. Thus the wave equation
for ~E takes the form

r2 ~E = εµ
∂2 ~E

∂t2
=

1

v2

∂2 ~E

∂t2
(16)

where the wave phase speed is

v =
1

p
εµ

In most ordinary materials like glass, µ ' µ0 and ε > ε0, so that

v

c
=

r
ε0µ0

εµ
'

r
ε0

ε
< 1

and light travels more slowly than in vacuum. The index of refraction of the
material is

n =
v

c
'

r
ε

ε0
> 1
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The Poynting vector is now
~S =

1

µ
~E £ ~B

The relation between the amplitudes of the ~E and ~B fields may be found from
Faraday’s law:

~k £ ~E0 = ω ~B0 =
k ~B0

v

so that

B0 =
E0

v
(17)

The fields are still perpendicular to each other and to ~k, and vary in phase.

4 Reflection and transmission of waves at a bound-
ary

4.1 Normal incidence
When a wave reaches a boundary between two di¤erent, LIH media, the wave
is partially transmitted and partially reflected. As with waves on a string, each
wave has the same frequency. This ensures that the boundary conditions are
satisfied at all times, not just at one time. The boundary conditions on the
fields are the same ones that we found in Physics 360:

normal ~D is continuous (18)

tangential ~E is continuous (19)

normal ~B is continuous (20)

tangential ~H is continuous (21)

We begin by writing expressions for ~E and ~B in all three waves. For
simplicity, let the boundary be the x, y¡plane, with medium 1 occupying the
region z < 0. The wave travels in the +ẑ direction (normal incidence). First
~E. We put the x¡axis parallel to ~E, so

~Ei = ~Ei0 exp(ik1z ¡ iωt) = Ei0 x̂exp (ik1z ¡ iωt)

~Et = ~Ei0 exp(ik2z ¡ iωt) = Et0 x̂ exp (ik2z ¡ iωt)

~Er = ~Er0 exp(¡ik1z ¡ iωt) = Er0 x̂ exp (¡ik1z ¡ iωt)

The minus sign in front of the k1z term in the reflected wave signifies that this
wave is going in the ¡z direction The wave numbers are

k1 =
ω

v1
= ω

p
ε1µ1

and
k2 =

ω

v2
= ω

p
ε2µ2
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Now in writing the magnetic field vectors, we must remember that

~k £ ~E0 = ω ~B0

So

~Bi = ~Bi0 exp (ik1z ¡ iωt) = Bi0 ẑ £ x̂exp (ik1z ¡ iωt) =
Ei0

v1
ŷ exp(ik1z ¡ iωt)

~Bt = ~Bt0 exp (ik2z ¡ iωt) =
Et0

v2
ŷ exp(ik2z ¡ iωt)

~Br = ~Br0 exp (¡ik1z ¡ iωt) = Br0 (¡ẑ) £ x̂ exp(ik1z ¡ iωt) = ¡Er0

v1
ŷ exp(¡ik1z ¡ iωt)

Now we apply the boundary conditions (18) to (21).
Continuity of normal ~D :

0 = 0

Continuity of tangential ~E :

Ei0 + Er0 = Et0 (22)

Continuity of normal ~B :
0 = 0

Continuity of tangential ~H :

Bi0 + Br0

µ1

=
Bto

µ2

Ei0 ¡ Er0

v1µ1

=
Et0

v2µ2

(23)

Now we solve. First multiply eqn (23) by v1µ1 :

Ei0 ¡ Er0 = v1µ1

Er0

v2µ2

= Et0
n2

n1

µ1

µ2

and now add to equation (22):

2Ei0 = Et 0

µ
1 +

n2

n1

µ1

µ2

¶

Thus
Et0 = 2Ei0

n1µ2

n1µ2 + n2µ1

(24)

and then from (22),

Er0 = Ei0

µ
2

n1µ2

n1µ2 + n2µ1

¡ 1

¶

= Ei0

µ
n1µ2 ¡ n2µ1

n1µ2 + n2µ1

¶
(25)
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This result is interesting, because it can be negative if n2µ1 > n1µ2. As in the
case of the waves on a string, it means that the ~E vector has a phase change of
π, or, equivalently, it changes direction. We may simplify these results if, as
is usual, µ1 ' µ2 ' µ0. Then

Et0 = Ei0
2n1

n1 + n2

Er0 = Ei0

µ
n1 ¡ n2

n1 + n2

¶

From these results we may calculate the reflected and transmitted intensities:

< Sinc >=
1

2µ1

Ei0Bi0 =
E2

i0

2µ1v1
=

1

2

r
ε1

µ1

E2
i0

< Str >=
1

2

r
ε2

µ2

E2
t0 =

1

2

r
ε2

µ2

4E2
i0

µ
n1µ2

n1µ2 + n2µ1

¶2

< Sre f >=
1

2

r
ε1

µ1

E2
r0 =

1

2

r
ε1

µ1

E2
i0

µ
n1µ2 ¡ n2µ1

n1µ2 + n2µ1

¶2

and

< St r > + < Sre f >=
1

2

r
ε1

µ1

E2
i0

"r
ε2µ1

µ2ε1
4

µ
n1µ2

n1µ2 + n2µ1

¶2

+

µ
n1µ2 ¡ n2µ1

n1µ2 + n2µ1

¶2
#

=
1

2

r
ε1

µ1

E2
i0

"
µ1

µ2

r
ε2µ2

ε1µ1

4

µ
n1µ2

n1µ2 + n2µ1

¶2

+

µ
n1µ2 ¡ n2µ1

n1µ2 + n2µ1

¶2
#

=
1

2

r
ε1

µ1

E2
i0

"
n2µ1

n1µ2

4(n1µ2)
2

(n1µ2 + n2µ1)
2

+

µ
n1µ2 ¡ n2µ1

n1µ2 + n2µ1

¶2
#

=
1

2

r
ε1

µ1

E2
i0

"
4n1µ2n2µ1

(n1µ2 + n2µ1)
2

+
(n1µ2)

2 ¡ 2n1µ2n2µ1 + (n2µ1)
2

(n1µ2 + n2µ1)
2

#

=
1

2

r
ε1

µ1

E2
i0

"
(n1µ2)

2
+ 2n1µ2n2µ1 + (n2µ1)

2

(n1µ2 + n2µ1)
2

#
=

1

2

r
ε1

µ1

E2
i0 = < Sinc >

This result is required by energy conservation.

4.2 Non-normal incidence
When a wave is incident at an angle θ 6= 0, we have to tbe aware that the
polarization of the wave enters into the boundary conditions. The plane that
contains the normal to the surface and the incident ray is called the plane of
incidence. (The ray is normal to the wavefront- see LB p547) If the electric
field vector is perpendicular to the plane of incidence, as in the diagram below,
we say that the wave is polarized perpendicular to the plane of incidence. If
the electric field vector lies in the plane of incidence, then the wave is polarized
in the plane of incidence.
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4.2.1 Polarization perpendicular to the plane of incidence

In this case the electric field vector is entirely tangential to the boundary. We
choose coordinates so that the boundary is the x ¡ y plane. Then

~Einc = ¡E0ŷ exp
³
i~k ¢ ~r ¡ iωt

´

~Ere f = ¡Er0 ŷ exp
³
i~kr ¢ ~r ¡ iωt

´

and
~Etra ns = ¡Et0 ŷ exp

³
i~kt ¢ ~r ¡ iωt

´

As usual each wave has the same frequency, and
¯̄
¯~kr

¯̄
¯ =

¯̄
¯~k

¯̄
¯ =

ω

v1
;

¯̄
¯~kt

¯̄
¯ =

ω

v2

Further, for points on the boundary,

~k ¢ ~r = kr sin θ

Thus the boundary condition (19—continuity of tangential ~E ) becomes

~Einc + ~Eref = ~Etra ns

¡E0 exp
³
i~k ¢ ~r ¡ iωt

´
¡ Er0 exp

³
i~kr ¢ ~r ¡ iωt

´
= ¡Et 0 exp

³
i~kt ¢ ~r ¡ iωt

´

The factors exp(¡iωt) cancel, leaving

¡E0 exp(ikr sinθ) ¡ Er0 exp (ikrr sin θr) = ¡Et0 exp (iktr sinθt) (26)

This relation must hold at all points on the boundary. Thus we must have

k sin θ = kr sinθr = kt sin θt

16



Since k = kr , we must have sin θ = sin θr , and further, since the angles of
incidence and reflection always lie in the range · θ · π/2, we must have

θ = θr (27)

This is the law of reflection. Similarly, since k = ω/v1 and kt = ω/v2,

sin θ

v1
=

sin θt

v2

or, equivalently,
n1 sin θ = n2 sin θt (28)

This is Snell’s Law.
It is important to note that these relations arise from the fact that we have

to satisfy a boundary condition at every point of the boundary. They do not
depend on the details of the boundary condition at all. Thus they hold for
plane waves of any kind, not just EM waves.

With equations (27) and (28) satisfied, boundary condition (26) becomes:

E0 + Er0 = Et0 (29)

Now we look at the conditions on ~B and ~H. These cannot give 2 independent
relations, because we only need two equations to find the two unknowns Er0 and
Et0 . Let’s look at them:

~Binc = ~k £ ~Einc = ¡~k £ ~yE0 exp
³
i~k ¢ ~r ¡ iωt

´

= ¡k (cos θ ẑ + sin θ x̂) £ ~yE0 exp
³
i~k ¢ ~r ¡ iωt

´

= k (cos θ x̂ ¡ sin θ ẑ) E0 exp
³
i~k ¢ ~r ¡ iωt

´

~Bref = ~kr £ ~Ere f = ¡~kr £ ŷEr0 exp
³
i~kr ¢ ~r ¡ iωt

´

= ¡k (¡ cos θ ẑ + sinθ x̂) £ ~yEr0 exp
³
i~k ¢ ~r ¡ iωt

´

= k (¡ cos θ x̂ ¡ sin θ ẑ)Er0 exp
³
i~k ¢ ~r ¡ iωt

´

and

~Btrans = ~kt £ ~Etrans = ¡Et0~kt £ ŷEt0 exp
³
i~kt ¢ ~r ¡ iωt

´

= kt (cos θt x̂ ¡ sinθt ẑ)E0 exp
³
i~k ¢ ~r ¡ iωt

´

Normal ~B :
¡k sinθE0 ¡ k sin θEr0 = ¡kt sin θtEt0

17



Using Snell’s law, we get back equation (29). We do get an independent equa-
tion from the boundary condition for tangential ~H :

k

µ1

cos θ (E0 ¡ Er0) =
kt

µ2

cos θt Et0

(E0 ¡ Er0) =
v1µ1

v2µ2

Et 0

p
1 ¡ sin2 θt

cos θ

(E0 ¡ Er0) =
n2µ1

n1µ2

Et0

q
1 ¡ n2

1 sin2 θ/n2
2

cos θ
(30)

We will simplify by taking µ1 = µ2 = µ0. Then combining equations (29) and
(30), we have

2E0 =

0
@1 +

q
n2

2 ¡ n2
1 sin2 θ

n1 cos θ

1
A Et0

Et0 =
2E0n1 cos θ

n1 cos θ +
q

n2
2 ¡ n2

1 sin2 θ
(31)

and then

Er0 = E0

n1 cos θ ¡
q

n2
2 ¡ n2

1 sin2 θ

n1 cos θ +
q

n2
2 ¡ n2

1 sin2 θ
(32)

4.2.2 Polarization parallel to the plane of incidence
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Now the boundary condition on tangential ~H (again with all µs equal) is

B0 + Br0 = Bt0

n1 (E0 + Er0) = n2Et0 (33)

while for tangential ~E we get

E0 cos θ ¡ Er0 cos θ = Et0 cos θt

E0 ¡ Er0 = Et0

p
1 ¡ sin2 θt

cos θ
(34)

Again the third non-trivial condition (for normal D) does not give an indepen-
dent relation. Combining these, we get

2E0 = Et0

0
@

q
1 ¡ n2

1 sin2 θ/n2
2

cos θ
+

n2

n1

1
A

Et0 =
2E0n1 cos θ

n2 cos θ + n1

q
1 ¡ n2

1 sin2 θ/n2
2

=
2E0n1n2 cos θ

n2
2 cos θ + n1

q
n2

2 ¡ n2
1 sin2 θ

(35)

and then

Er0 = E0

n2
2 cos θ ¡ n1

q
n2

2 ¡ n2
1 sin2 θ

n2
2 cos θ + n1

q
n2

2 ¡ n2
1 sin2 θ

(36)

In both polarizations we find that the reflected and transmitted amplitudes
depend on the angle of incidence, as well as the properties of the two materials.
In fact, the refelected amplitude (36) may actually be zero at an angle given by

n2
2 cos θ = n1

q
n2

2 ¡ n2
1 sin2 θ

square both sides:
n4

2 cos2 θ = n2
1

¡
n2

2 ¡ n2
1 sin2 θ

¢

Now use a trick: write 1 = cos2 θ + sin2 θ

n4
2

n2
1

cos2 θ = n2
2

¡
cos2 θ + sin2 θ

¢
¡ n2

1 sin2 θ

n2
2

n2
1

¡
n2

2 ¡ n2
1

¢
cos2 θ =

¡
n2

2 ¡ n2
1

¢
sin2 θ

Then, provided n2 6= n1,

tanθB =
n2

n1
(37)
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This angle is called Brewster’s angle. At this angle of incidence, in this po-
larization, all of the wave energy is transmitted and none is reflected. (We’ll
discuss why this happens later- see also LB §33.3.2). Note, however, that
nothing special happens at this angle for waves polarized perpendicular to the
plane of incidence. In fact, Er0 in equation (32) is never zero for any θ. Check
this for yourself. What this means is that if we have unpolarized incident light,
equal amplitudes in the two polarizations, at Brewster’s angle only one of the
two polarizations is reflected. The reflected light is completely polarized per-
pendicular to the plane of incidence. This phenomenon is called "polarization
by reflection".

Under what conditions do we get a phase change of the reflected wave? That
is, when is the sign of Er0 opposite that of E0? Starting from equation (32), we
want to find when

n1 cos θ <
q

n2
2 ¡ n2

1 sin2 θ

n2
1 cos2 θ < n2

2 ¡ n2
1 sin2 θ

This is true for
n1 < n2

independent of θ, as we also found for normal incidence.
For the other polarization, Start with equation (36)

n2
2 cos θ ¡ n1

q
n2

2 ¡ n2
1 sin2 θ < 0

or, equivalently,
n4

2 cos2 θ < n2
1

¡
n2

2 ¡ n2
1 sin2 θ

¢

Using the same trick as in finding Brewster’s angle, we find this reduces to

n2
2

n2
1

¡
n2

2 ¡ n2
1

¢
cos2 θ <

¡
n2

2 ¡ n2
1

¢
sin2 θ

or
θ < θB if n2 > n1

and
θ > θB if n1 < n2

4.2.3 Reflection and transmission coe¢cients

The incident power striking unit area of the interface is

~S in ¢ ẑ =
³

~Ein £ ~Hin

´
¢ ẑ
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Now we time average to get

Iin =
1

2
E2

0

"
ê £

Ã
~k

ω
£ ê

!#
¢ ẑ

=
1

2v1µ1

E2
0 k̂ ¢ ẑ

=
1

2
ε1v1E

2
0 cos θ

where
~E0 = E0ê

and ê is the polarization vector. We can compute the reflected and transmitted
intensities similarly. Then the reflection coe¢cient is defined as

R =
IR

Iin
=

E2
r 0

E2
0

and the transmission coe¢cient is

T =
IT

Iin
=

v1

v2

E2
t 0

E2
0

cos θt

cos θ
=

n2

n1

E2
t0

E2
0

cos θt

cos θ

For polarization perpendicular to the plane of incidence, we get

R =

0
@

n1 cos θ ¡
q

n2
2 ¡ n2

1 sin2 θ

n1 cos θ +
q

n2
2 ¡ n2

1 sin2 θ

1
A

2

and

T =

0
@ 2n1 cos θ

n1 cos θ +
q

n2
2 ¡ n2

1 sin2 θ

1
A

2

n2 cos θt

n1 cos θ

=
4n1n2 cos θ cos θtµ

n1 cos θ +
q

n2
2 ¡ n2

1 sin2 θ

¶2

and

R + T =

µ
n1 cos θ ¡

q
n2

2 ¡ n2
1 sin2 θ

¶2

+ 4n1n2 cos θ cos θt

³
n1 cos θ +

p
n2

2 ¡ n2
1 sinθ

´2

=
n2

1 cos2 θ + n2
2 ¡ n2

1 sin2 θ ¡ 2n1 cos θ
q

n2
2 ¡ n2

1 sin2 θ + 4n1 cos θ
q

n2
2 ¡ n2

1 sin2 θ
µ

n1 cos θ +

q
n2

2 ¡ n2
1 sin2 θ

¶2

= 1

Verify that this result also holds, as it must, for the other polarization.
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5 Waves in conductors
An electric field in a conductor drives a current.

~j = σ ~E =
~E

ρ

and thus some of the field energy is converted to kinetic energy of electrons
in the conductor. This leads to absorption of the wave energy. In order to
investigate this, we must include the current in Maxwell’s equations. The only
equation to change is the Ampere-Maxwell law.

~r £ ~B = µ~j + µε
∂ ~E

∂t
= µσ ~E + µε

∂ ~E

∂t

We may still take the free charge density ρf to be zero. For suppose ρf is not
zero. Then from charge conservation,

∂ρf

∂t
= ¡~r ¢ ~j = ¡~r ¢ σ ~E

= ¡σ
³ρf

ε

´

This di¤erential equation has the solution

ρf = ρ0 exp
³
¡σ

ε
t
´

so the charge density dies away with a time scale

τ =
ε

σ

which is very small for good conductors. As we discussed before, even if σ ! 1,
the timescale does not go to zero, as the dominant factor is then the timescale
for the fields to change, of order (scale of system)/(speed of light).

Now we may rederive the wave equation with the extra term in Ampere’s
law. Starting from equation (11), we have

~r
³

~r ¢ ~E
´

¡ r2 ~E = ¡ ∂

∂t

³
~r £ ~B

´
= ¡ ∂

∂t

Ã
µσ ~E + µε

∂ ~E

∂t

!

which becomes

r2 ~E =
∂

∂t
µσ ~E + µε

∂2 ~E

∂t2

The wave equation now has an extra term. We may still find a plane wave
soution of the form:

~E = ~E0 exp
³
i~k ¢ ~r ¡ iωt

´

~B = ~B0 exp
³
i~k ¢ ~r ¡ iωt

´
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Stu¢ng these expressions into the wave equation and Maxwell’s equations, we
have

¡k2 = ¡iωµσ ¡ µεω2 (38)

~k ¢ ~E0 = 0

~k ¢ ~B0 = 0

~k £ ~E0 = ω ~B0 (39)

Thus the wave has the same transverse nature as before. The only thing that
has changed is the relation of k to ω. Equation (38) requires that k be complex
if ω is real. So let k = κ + iγ. Then

k2 = κ2 ¡ γ2 + 2iκγ = iωµσ + µεω2

So we have two equations obtained by setting the real part on the left equal to
the real part on the right, and also by setting the two imaginary parts equal.

κ2 ¡ γ2 = µεω2

2κγ = ωµσ

From the second, we get

γ =
ωµσ

2κ
(40)

and then from the first

κ2 ¡
³ωµσ

2κ

´2

¡ µεω2 = 0

This is a quadratic equation for κ2 with solution

κ2 =
µεω2 §

q
(µεω2)

2
+ (ωµσ)

2

2

= µεω2
1 §

q
1 + (σ/ωε)

2

2

We must get back our previous result k = ω
p

µε as σ ! 0, so we need the plus
sign:

κ = ω
p

µε

vuut 1 +
q

1 + (σ/ωε)2

2

and then from (40), we have

γ =
σ

2

r
µ

ε

vuut
2

1 +

q
1 + (σ/ωε)

2
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The imaginary part of k shows that the wave is damped:

exp i~k ¢ ~r = exp
h
ik̂ ¢ ~r (κ + iγ)

i
= exp

³
iκk̂ ¢ ~r

´
exp

³
¡γk̂ ¢ ~r

´

and taking the real part, we have

cos
³
κk̂ ¢ ~r

´
exp

³
¡γk̂ ¢ ~r

´

The wave attenuates exponentially as it propagates. The distance travelled
before the wave amplitude drops to 1/e of its original value is called the skin
depth

δ =
1

γ

Faraday’s law (equation (39)) shows that ~E and ~B no longer oscillate in phase.
We may write ~k in exponential form as

~k = k̂ (κ + iγ) = k̂
p

κ2 + γ2 exp iφ, tan φ =
γ

κ

where

k =
p

κ2 + γ2 =

vuuutµεω2
1 +

q
1 + (σ/ωε)

2

2
+

σ2

2

µ

ε

1

1 +

q
1 + (σ/ωε)

2

= ω
p

µε

vuuuut
2 + (σ/ωε)2 + 2

q
1 + (σ/ωε)2 + σ2/ω2ε2

2

µ
1 +

q
1 + (σ/ωε)

2

¶

= ω
p

µε
³
1 + (σ/ωε)

2
´1/4

and
tan φ =

σ

εω

µ
1 +

q
1 + (σ/ωε)2

¶

Then equation (39) becomes

k̂ £ êE0

¡
keiφ

¢
= ~B0

B0 = ω
p

µε
³
1 + (σ/ωε)

2
´1/4

E0e
iφ

A material is a good conductor as far as wave propagation is concerned if

σ

ωε
À 1

in which case we find
B0 ' p

σωµE0e
iφ
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so that

B0 À E0

v

and the phase shift δ is almost π/4. (tan δ ! 1). The fields in the conductor are
primarily magnetic in character. In this limit we also have

κ ' ω
p

µε

r
1 + σ/ωε

2
'

r
ωσµ

2
' γ

and the wave damps within one wavelength. On the other hand, if σ/ωε ¿ 1,
we have a poor conductor, the phase shift is small, and the amplitudes of the
fields are not much di¤erent from those in a non-conducting medium.

5.1 Reflection at a conducting surface
There may be a free surface charge density on the surface of a conductor. In
fact, there usually is. But there cannot be a free surface current density as this
would require an infinite electric field (~j = σ ~E, and if ~j = ~Kδ (z ¡ zsurfa ce ) then
~E =

~K
σ

δ (z ¡ zsurf ace) . Such an electric field cannot exist. Thus we choose to

use the boundary conditions on tangential ~E, normal ~B and tangential ~H. Let’s
consider normal incidence for simplicity. Then we have

E0 + Er = Et

and

H0 ¡ Hr = Ht

ω

v1
(E0 ¡ Er) =

r
σω

µ2

Ete
iφ

(E0 ¡ Er) = v1

r
σ

ωµ2

Ete
iφ

Thus we have

2E0 = Et

µ
1 + v1

r
σ

ωµ2

eiφ

¶

Et =
2E0µ

1 + v1

q
σ

ωµ2
eiφ

¶

and then

Er = E0

0
@

1 ¡ v1

q
σ

ωµ2
eiφ

1 + v1

q
σ

ωµ2
eiφ

1
A (41)

As σ ! 1, Et ! 0 and Er ! ¡1.
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5.2 Note on computing power using complex numbers
When our amplitudes are complex, as in (41), we must be careful when evalu-
ating physical quantities that involve the square of these numbers. Let’s look
at the power.

~S =
1

µ0

~E £ ~B

Since
Re (z1z2) 6= Re (z1) Re (z2)

we must take the real part before multiplying. Thus

~Sphys =
1

µ0

~E0 cos
³
~k ¢ ~r ¡ ωt + φE

´
£ ~B0 cos

³
~k ¢ ~r ¡ ωt + φB

´

=
1

2µ0

~E0 £ ~B0

h
cos

³
2~k ¢ ~r ¡ 2ωt + φE + φB

´
+ cos (φE ¡ φB )

i

Now we time average, to get

< ~Sphys > =
1

2µ0

~E0 £ ~B0 cos (φE ¡ φB )

We can get the same result more easily as follows:

1

2µ0

~E £ ~B¤ =
1

2µ0

~E0 £ ~B0 exp (iφE ¡ iφB)

and so

< ~Sphys > = Re

µ
1

2µ0

~E £ ~B¤
¶

(42)

6 Dispersive media
In general the properties of a medium, such as ε and µ, are frequency dependent.
This means that waves of di¤erent frequencies travel at di¤erent speeds. A
plane wave carries no information. To transmit a signal we have to vary either
the amplitude of the frequency of the wave- the resulting signal is called AM
or FM ( as on your radio dial). The wave crests travel at the phase speed
vφ = ω/k but the envelope that carries the information travels at the group
speed vg = dω/dk. It is vg, not vφ, that must be less than c. In order to get
the signal, many di¤erent frequencies make up the wave packet, and because
they do not all travel at the same speed, over time the signal becomes less well
defined— the pulse is dispersed. Those of you who plan to take Phys 704 in the
spring will learn more about these e¤ects then. For now, let’s see if we can
understand how the frequency dependence arises.

We begin with a simple classical model of an electron in an atom. The
electron behaves as an oscillator with a restoring force

~Fres = ¡mω2
0~s
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where ω0 is the natural oscillation frequency and ~s is the electron displacement.
There is also damping due to radiation reaction, which we may write as

~Fdam p = ¡mγ
d~s

dt

Now when an incident EM wave reaches the electron, it will experience a force

~FEM = ¡e
³

~E + ~v £ ~B
´

We have already seen that, for waves in a medium with phase speed vφ,

B0 =
E0

vφ

so the magnetic force is smaller than the electric force by a factor v/vφ which is
typically ¿ 1 since vφ » c. So we will ignore the magnetic force. Now we may
write the equation of motion for the electron:

~Fto t = m~a

¡e ~E0 cosωt ¡ mω2
0~s ¡ mγ

d~s

dt
= m

d2~s

dt2

The electron oscillates with ~s parallel to ~E0. We may put the x¡axis along this
direction, to get

¢¢
x + γ _x + ω2

0x = ¡eE0 cos ωt = Re
³
¡ e

m
E0 exp(¡iωt)

´

The solution will be of the form

x = Re
¡
x0e

¡iωt
¢

Stu¤ this in and check:
¡
¡ω2 ¡ iγω + ω2

0

¢
x0 = ¡ e

m
E0

so

x0 =
eE0/m

ω2 + iγω ¡ ω2
0

(43)

and the electron contributes a dipole moment about its original equilibrium
position of

~p = ¡e~s = ¡ e2

m

~E0

ω2 + iγω ¡ ω2
0

Summing up over all the particles in the material, where there are n molecules
per unit volume, each of which has fj electrons with frequency ωj and damping
γj , we get a polarization

~P = n~p = ¡n
e2

m

X

j

fj
~E0

ω2 + iγjω ¡ ω2
j
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So we now have a model for the susceptibilty of the material

~P = ε0χe
~E

Thus

χe = ¡n
e2

m

X

j

fj

ω2 + iγjω ¡ ω2
j

Because χ is a complex number, the polarization is out of phase with the driving
field ~E. The dielectric constant is than

ε = ε0

0
@1 +

ne2

ε0m

X

j

fj

ω2
j ¡ iγjω ¡ ω2

1
A (44)

and consequently the wave equation (16) has plane wave solutions of the form

~E = ~E0 exp
³
i~k ¢ ~r ¡ iωt

´

where

¡k2 ~E0 = εµω2 ~E0 = ε0µω2 ~E0

0
@1 +

ne2

ε0m

X

j

fj

¡
ω2

j + iγjω ¡ ω2
¢

¡
ω2

j ¡ ω2
¢2

+
¡
γjω

¢2

1
A

and because ε is complex, k must be complex too.

k = kr + iki

Putting the z¡axis along k̂, we have

~E = ~E0 exp (¡kiz) exp (ikrz ¡ iωt)

The wave is damped. The wave intensity is proportional to E2, and so it de-
creases as exp (¡2kiz) = exp(¡αz) where α is the absorption coe¢cient.

Let’s look at the special case where the second term in equation (44) is
small, for example, in gases. Then we can approximate the square root using
the binomal series: p

1 + x ' 1 +
x

2
if x ¿ 1

So

k =
p

εµω =
ω

c

0
@1 +

ne2

2ε0m

X

j

fj

¡
ω2

j + iγjω ¡ ω2
¢

¡
ω2

j ¡ ω2
¢2

+
¡
γjω

¢2

1
A

so

α =
ω2

c

ne2

ε0m

X

j

fjγj¡
ω2

j ¡ ω2
¢2

+
¡
γjω

¢2 (45)
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and the refective index is

n =
ckr

ω
= 1 +

ne2

2ε0m

X

j

fj

¡
ω2

j ¡ ω2
¢

¡
ω2

j ¡ ω2
¢2

+
¡
γjω

¢2 (46)

The denominator of the fraction in these equations becomes very small when
ω ' ωj because γj ¿ ωj , and thus the fraction becomes large. There are
resonances at the fundamental frequencies of the system. These correspond to
atomic and molecular line transition frequencies. To display the behavior more
clearly, look at a system with only one resonance, and let

ne2

ε0m
= ω2

p; ω/ωj = x; γj/ωj = η

Then

α =
ω2

ω2
j c

ω2
p

ω2
j

fjγj¡
1 ¡ ω2/ω2

j

¢2
+

¡
γjω

¢2
/ω4

j

=
ω2

p

cωj

ηfj

(1 ¡ x2)2 + (ηx)2

and

n = 1 +
ω2

p

2ω2
j

fj

¡
1 ¡ x2

¢

(1 ¡ x2)
2

+ (ηx)
2

The plot shows cα/ωj (solid line) and n ¡ 1 (dashed line) with η = 0.1 (much
larger than actual values, for clarity in the plot) and fjω

2
p/ω2

j = 1

0.5 1 1.5 2 2.5 3x

The absorption coe¢cient peaks strongly around x = 1, and is very small away
from that region. The width of the peak is determined by η, which is usually
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much less than the value of 1/10 used in these plots. The index of refraction n is
greater than 1 for x < 1 but becomes <1 for x > 1. Thus the phase speed of the
waves is actually greater than c for frequencies slightly greater than resonance.
The group speed, however, remains less than c.The refractive index n drops
steeply at the resonance— this e¤ect is called anomalous dispersion. For real
materials, we have to sum the contributions from all the resonances, but graphs
like this describe the behavior near each one.

For frequencies well away from resonance, the e¤ect of damping is negligible
and we have the simpler relation

n = 1 +
ω2

p

2ω2
j

fj

(1 ¡ x2)

Further, if we are well below resonance, x = ω/ωj ¿ 1 (in transparent materials
like glass ωj is usually in the UV), we have

n = 1 +
ω2

p

2ω2
j

fj

¡
1 + x2

¢

and we see that n increases with frequency. (See LB §16.5.5).

7 Wave guides
We’ll close this discussion of waves by looking at happens when a wave is con-
fined within a set of boundaries. The wave fields have to satisfy boundary
conditions on the walls as well as the wave equation. Consider a wave guide
made of of a long, straight, perfectly conducting tube with a constant cross-
section, whose shape, for the moment, is arbitrary. The electric field has to
be zero inside the perfectly conducting walls, and since wave fields are time-
varying, that means that ~B must also be zero. Otherwise, the non-zero ∂ ~B/∂t

would create an ~E through Faraday’s law, and we know there can be no ~E.
Then making use of the boundary conditions, we must have

~B ¢ n̂ = 0

on the guide walls, and
n̂ £ ~E = 0

as well. We do not use the boundary condition on ~D ¢ n̂ because there could be
a non-zero surface charge density on the wall.

We are interested in waves propagating along the guide, in the z¡direction.
The waves can start o¤ propagating at an angle to the z¡axis, in which case
they will reflect at the wall, and propagate down the guide by bouncing back
and forth. The superposition of these waves forms the total disturbance in
the guide. As the waves superpose, they will interfere, and only the waves
that interfere constructively contribute. It is easier to solve a boundary-value
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problem than to try to sum the appropriate set of reflecting waves. (But see LB
Digging Deeper, page 1060 for a simple example of how it goes.) We should
note that each of the reflecting waves has the form we have come to expect (~E

perpendicular to ~B perpendicular to ~k), but when we superpose them to get a
disturbance travelling parallel to the guide (z) axis, the resulting fields can have
a z¡component. (See LB Figure 33.28, for example.) So we have to allow for
this possibility. We start o¤ with the following assumed form for ~E and ~B (as
usual, real part is implied).

~E = ~E0 exp (ikz ¡ iωt) =
h
~E? (x, y) + Ez (x, y) ẑ

i
exp (ikz ¡ iωt)

~B = ~B0 exp (ikz ¡ iωt) =
h
~B? (x, y) + Bz (x, y) ẑ

i
exp (ikz ¡ iωt)

The amplitudes must depend on x, y so as to satisfy the boundary conditions.
Now we stu¤ these into Maxwell’s equations. For simplicity let the guide
interior be vacuum.

~r ¢ ~E =
³

~r? ¢ ~E? + ikEz

´
exp (ikz ¡ iωt) = 0

~r ¢ ~B =
³

~r? ¢ ~B? + ikBz

´
exp (ikz ¡ iωt) = 0

From these first two equations we can already see that the z¡components of
the fields act as sources for the perpendicular components:

~r? ¢ ~E? =
∂Ex

∂x
+

∂Ey

∂y
= ¡ikEz (47)

~r? ¢ ~B? =
∂Bx

∂x
+

∂By

∂y
= ¡ikBz (48)

From the last two equations, we have

³
~r £ ~E

´
x

=
∂Ez

∂y
¡ ∂Ey

∂z
= iωBx =

∂Ez

∂y
¡ ikEy (49)

³
~r £ ~E

´
y

= ikEx ¡ ∂Ez

∂x
= iωBy (50)

³
~r £ ~E

´
z

=
∂Ey

∂x
¡ ∂Ex

∂y
= iωBz (51)

and similarly

³
~r £ ~B

´
x

=
∂Bz

∂y
¡ ikBy = ¡i

ω

c2
Ex (52)

³
~r £ ~B

´
y

= ikBx ¡ ∂Bz

∂x
= ¡i

ω

c2
Ey (53)

³
~r £ ~B

´
z

=
∂By

∂x
¡ ∂Bx

∂y
= ¡i

ω

c2
Ez (54)
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We can solve these equations to get the x¡ and y¡components in terms of the
z¡components. From (49)

Ey =
1

ik

µ
∂Ez

∂y
¡ iωBx

¶

and then from (53)

Bx =
1

ik

µ
∂Bz

∂x
¡ iω

c2
Ey

¶

Combining these, we have

Ey =
1

ik

·
∂Ez

∂y
¡ iω

1

ik

µ
∂Bz

∂x
¡ iω

c2
Ey

¶¸

=
1

ik

∂Ez

∂y
+ iω

1

k2

∂Bz

∂x
+

ω2

k2c2
Ey

So

Ey

µ
1 ¡ ω2

c2k2

¶
= i

µ
ω

k2

∂Bz

∂x
¡ 1

k

∂Ez

∂y

¶

Ey =
i

ω2/c2 ¡ k2

µ
k

∂Ez

∂y
¡ ω

∂Bz

∂x

¶
(55)

Similarly, we get for the other components:

Ex =
i

ω2/c2 ¡ k2

µ
k

∂Ez

∂x
+ ω

∂Bz

∂y

¶
(56)

Bx =
i

ω2/c2 ¡ k2

µ
k

∂Bz

∂x
¡ ω

c2

∂Ez

∂y

¶
(57)

By =
i

ω2/c2 ¡ k2

µ
k

∂Bz

∂y
+

ω

c2

∂Ez

∂x

¶
(58)

Now if we can just find the z¡components, we are done! So go back to
equations (47) and (48) and insert the results for the x¡and y¡components.
We simplify the notation by writing

γ2 ´ ω2

c2
¡ k2

∂

∂x

·
i

γ2

µ
k

∂Ez

∂x
+ ω

∂Bz

∂y

¶¸
+

∂

∂y

·
i

γ2

µ
k

∂Ez

∂y
¡ ω

∂Bz

∂x

¶¸
= ¡ikEz

∂2Ez

∂x2
+

∂2Ez

∂y2
= ¡γ2Ez(59)

and we get the same equation for Bz :

∂2Bz

∂x2
+

∂2Bz

∂y2
= ¡γ2Bz (60)
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These are decoupled equations: the solution for Ez is independent of Bz and
vice versa. That means we can solve for Ez assuming Bz = 0 — these are the
TM or transverse magnetic modes, and then solve for Bz assuming Ez = 0 —
these are the transverse electric modes, and then get a general solution as a
linear combination

~E = α~ET E + β ~ETM

If both Ez and Bz are zero we have TEM, or transverse electro-magnetic
modes. For these modes, equation (51) becomes

µ
∂Ey

∂x
¡ ∂Ex

∂y

¶
ẑ = 0 = ~r £ ~E ) ~E = ¡~rª

and equation (47) becomes

∂Ex

∂x
+

∂Ey

∂y
= ~r ¢ ~E = 0 = ¡r2ª

We know that the maxima and minima of the function ª, a solution of Laplace’s
equation, must occur on the boundary of the region. But ~E £ n̂ is zero on the
boundary, which means that ª is constant on the boundary, and thus it is
constant throughout the guide. But if ª is constant then ~E = 0. The only
exception to this is if the guide has two separate pieces to its boundary— as in
a coaxial cable.

Now it is time to tackle the boundary conditions. Tangential ~E must be
zero, and one of the tangential components is Ez , so for the TM mode we must
have

Ez = 0 on the walls. (61)

The boundary condition for Bz is a bit more complicated, so we’ll wait for a
specific example.

7.1 Waves in a rectangular guide

Let the guide have a rectangular cross-section measuring a £ b.

7.1.1 TM modes

The Ez component satisfies the di¤erential equation (59) together with the
boundary condition (61). We may solve using separation of variables:

Ez = X (x)Y (y)

Then the di¤erential equation is

X 00Y + XY 00 = ¡γ2XY

or
X 00

X
+

Y 00

Y
= ¡γ2
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The two terms on the left of this equation must each be constant if we are to
satisfy the equation for all values of x and y. Further, we want solutions for X
that are zero at two values of x, x = 0 and x = a. Thus we need a negative
separation constant so that the solution is a sine:

X 00 = ¡α2X ) X = sinαx and α =
nπ

a

similarly for Y :

Y 00 = ¡β2Y ) Y = sin βy and β =
mπ

b

Then ³nπ

a

´2

+
³ mπ

b

´2

= γ2
mn =

ω2

c2
¡ k2 (62)

At a given frequency ω, the corresponding wave number is

k =

r
ω2

c2
¡ γ2

mn

Clearly ω must be greater than γmn for the wave to propagate (k > 0). Thus
for each mode (value of m and n) there is a minimum frequency at which that
mode will propagate. This is the cut-o¤ frequency for that mode.

ωcuto ¤,mn = cγmn = cπ

r
n2

a2
+

m2

b2

There is also a cuto¤ frequency for the guide, corresponding to the lowest cuto¤
frquency for any mode.

ωcuto¤, guide = ωcuto¤ ,lowest mo de = cγm in

Considering only TM modes, we have a cuto¤ frequency corresponding to m =
n = 1

ωcuto¤ ,TM = cπ

r
1

a2
+

1

b2

The wave phase speed is

vφ =
ω

k
=

ωp
ω2/c2 ¡ γ2

mn

= c
1p

1 ¡ c2γ2
mn/ω2

and is always greater than c. However the group speed is

vg =
dω

dk

To get this most easily, we start with the expresson for k2 : .

2k
dk

dω
= 2

ω

c2
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So
dω

dk
= c2 k

ω
= c

c

vφ

Thus if vφ > c, vg < c. Information travels down the guide more slowly than in
vacuum. Sometimes the guides are called delay lines, indicating that the guide
slows the propagation of information down the guide.

7.1.2 TE modes

For the TE modes, we use the boundary condition on normal ~B. Thus at x = 0
and x = a we must have Bx = 0, while at y = 0 and y = b we must have By = 0.
We need to express these results in terms of Bz , so we use relations (57) and
(58), remembering that Ez ´ 0 in this mode, so

Bx =
i

ω2/c2 ¡ k2

µ
k

∂Bz

∂x

¶

By =
i

ω2/c2 ¡ k2

µ
k

∂Bz

∂y

¶

and so are boundary conditons are

∂Bz

∂x
= 0 at x = 0, a

∂Bz

∂y
= 0 at y = 0, b

These are Neumann conditions. The solutions are then:

Bz = cos
³ nπx

a

´
cos

³ mπy

b

´

with

γ2
mn =

n2

a2
+

m2

b2

except that now either n or m may be zero (but not both!) giving a lowset
frequency for the TE mode of

ωcuto¤,T E =
cπ

a

for the case a > b. Since this is a lower frquency than for the TM modes, this is
the cuto¤ frequency for the guide.
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