Multipole expansions

We have frequently referred to our RULE 1: far enough away from any
charge distribution with net charge @, the potential is approximately that due
to a point charge @ located in the distribution. We also found from our very
first example that the next correction is a dipole. The dipole potential falls ox
faster (< 1/7r2) than the point charge (or monopole) potential (o< 1/7). Now
we’d like to make these ideas more precise.

We have a charge distribution with charge density p (v”). We put the origin
somewhere inside the distribution, and we put the polar axis in a spherical
coordinate system through a point P at which we want to find the potential.
The entire charge distribution is located inside a sphere of radius rq and P is
outside that sphere.

Then the potential at P is
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Since r > rg and r’ < ro, we factor out the r to get
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In fact, as P gets farther from the charge distribution, ¢ becomes much less
than 1. So we expand the square root
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I’ll let you check the next few. In fact
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This is the multipole expansion of the potential at P due to the charge distrib-
ution. The first few terms are:
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This isour RULE 1. The monople moment (the total charge @) is indendent of
our choice of origin. The potential does depend on the origin (because r does)
but only weakly if r > rg.
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This is the dipole potential.
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This is the quadrupole potential.

Each succeeding term decreases faster with » and so becomes less important
as P gets further from the origin.

These expressions depend on the particular coordinate system that we have
chosen. Most importantly, P is on the polar axis. So let’s see if we can write
the results in a coordinate independent way. Note that
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so the dipole potential is
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is the dipole moment of the charge distribution. Notice that this integral may
depend on the choice of origin, because # does. However, if the total charge Q
is zero, then p'is independent of origin. To see this, let p; be the dipole moment
with respect to origin 1, p> with respect to origin 2, and let 712 be the position
of origin 2 with respect to origin 1. Then
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So if @ =0, then p; = ps.
This is an example of a more general result:

The first non-zero multipole moment is independent of origin.

Result (5) also explains the results we obtained in our very first example for
the dipole moment of the two point charges. A charge that is not at the origin
but at position 7 contributes a dipole moment Q7 with respect to that origin.

An ideal or "pure" dipole is located at a single point. That is, it is the
dipole moment of two equal and opposite point charges separated by a distance
d in the limit that d — 0. In order that p’ not be zero, we have to let ¢ — oo.
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where, as we take the limit, we hold the product ¢d = p constant. The vector
d points from the negative charge to the positive charge in the pair. (Gric¢ths
uses the term "pure”, but | don’t like it. | think "ideal" is more appropriate.)

Equation (2) gives the potential at a point on the polar axis as a series in
powers of 1/r. It does not give us the potential at other points. However, the
dipole potential (3) is valid everywhere. It may be written
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where @ is the angle between i and 7, that is, it is the polar angle in a coordinate
system with polar axis along p. Then we have
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The dipole itself, remember, has z—component (from 2 with [ = 1)
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and it is not coincidental that P; shows up again in (6). In fact, if our charge

distribution has azimuthal symmetry about an axis that we choose as our polar
axis, then we may write:
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We still do not have a completely general result, and that will have to wait until
Physics 704.

Example:

A hemisphere of radius a contains charge density p = p,= + pl-;%. Find the
monople, dipole and quadrupole moments of this charge distribution, and hence
find the potential at distance r > a from the hemisphere.
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The dipole moment is
p= /deT = /p(r, 0) (22 + x2 + yy) r* sin 0dddpdr
Only the z—component is non-zero, because

T = rsin cos ¢

and
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The y—component vanishes similarly.



Then
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Finally the quadrupole is
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Are there more terms? Yes there are.
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Now if [ is even, then P, (u) is an even function of p, but P, (1) is odd. But if

I is odd, then P, (u) is even.

For an even function
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Thus for [ even
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We already found that this is true for [ = 2 above. Then for [ odd
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Thus there are higher multipoles, but for [ > 1, all even multipoles involve only
p, but all odd multipoles involve only p,.
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Now suppose p; = py/2. Then
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Green 0.15, Black 0.1 red 0.05
Notice how the equipotential surfaces get more spherical as distance from
the hemisphere (in blue) increases.



