Multipole expansions

We have frequently referred to our RULE 1: far enough away from any charge distribution with net charge Q, the potential is approximately that due to a point charge Q located in the distribution. We also found from our very first example that the next correction is a dipole. The dipole potential falls off faster $(\propto 1/r^2)$ than the point charge (or monopole) potential $(\propto 1/r)$. Now we'd like to make these ideas more precise.

We have a charge distribution with charge density $\rho(\vec{r}')$. We put the origin somewhere inside the distribution, and we put the polar axis in a spherical coordinate system through a point P at which we want to find the potential. The entire charge distribution is located inside a sphere of radius r_0 and P is outside that sphere.

Then the potential at P is

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau'$$
 (1)

where

$$|\vec{r} - \vec{r}'| = \sqrt{r^2 + (r')^2 - 2rr'\cos\theta'}$$

Since $r > r_0$ and $r' < r_0$, we factor out the r to get

$$|\vec{r} - \vec{r}'| = r\sqrt{1 + \left(\frac{r'}{r}\right)^2 - 2\frac{r'}{r}\cos\theta'} = r\sqrt{1 + \varepsilon}$$

where

$$|\varepsilon| = \left| \frac{r'}{r} \left(\frac{r'}{r} - 2\cos\theta' \right) \right| < 1$$

In fact, as P gets farther from the charge distribution, ε becomes much less than 1. So we expand the square root

$$\frac{1}{\sqrt{1+\varepsilon}} = (1+\varepsilon)^{-1/2} = 1 - \frac{1}{2}\varepsilon + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\varepsilon^2 + \cdots$$
$$= 1 - \frac{1}{2}\varepsilon + \frac{3}{8}\varepsilon^2 - \frac{5}{16}\varepsilon^3 + \cdots$$

So

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \left[1 - \frac{1}{2} \frac{r'}{r} \left(\frac{r'}{r} - 2\cos\theta' \right) + \frac{3}{8} \left(\frac{r'}{r} \right)^2 \left(\frac{r'}{r} - 2\cos\theta' \right)^2 - \frac{5}{16} \left(\frac{r'}{r} \right)^3 \left(\frac{r'}{r} - 2\cos\theta' \right)^3 + \cdots \right]$$

$$= \frac{1}{r} \left[1 + \frac{r'\cos\theta'}{r} - \frac{1}{2} \left(\frac{r'}{r} \right)^2 + \frac{3}{8} \left(\frac{r'}{r} \right)^2 \left(\left(\frac{r'}{r} \right)^2 - 2\frac{r'}{r}\cos\theta' + 4\cos^2\theta' \right) \right] - \frac{5}{16} \left(\frac{r'}{r} \right)^3 \left(\frac{r'}{r} - 2\cos\theta' \right)^3 + \cdots \right]$$

$$= \frac{1}{r} \left[1 + \frac{r'\cos\theta'}{r} + \frac{1}{2} \left(\frac{r'}{r} \right)^2 \left(3\cos^2\theta' - 1 \right) + \frac{1}{r} \left(\frac{3}{8} \left(\frac{r'}{r} \right)^2 \left(\left(\frac{r'}{r} \right)^2 - 2\frac{r'}{r}\cos\theta' \right) - \frac{5}{16} \left(\frac{r'}{r} \right)^3 \left(\frac{r'}{r} - 2\cos\theta' \right)^3 + \cdots \right]$$

$$= \frac{1}{r} \left[1 + \frac{r'}{r} P_1(\mu') + \left(\frac{r'}{r} \right)^2 P_2(\mu') + \cdots \right]$$

I'll let you check the next few. In fact

$$\frac{1}{|\vec{r} - \vec{r'}|} = \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^{l} P_l\left(\mu'\right)$$

Now we put this result into our integral (1) for the potential:

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\vec{r}') \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^l P_l(\mu') d\tau'$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \sum_{l=0}^{\infty} \frac{1}{r^l} \int \rho(\vec{r}') (r')^l P_l(\mu') d\tau'$$
(2)

This is the multipole expansion of the potential at P due to the charge distribution. The first few terms are:

$$l = 0: \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \int \rho(\vec{r}') d\tau' = \frac{Q}{4\pi\varepsilon_0 r}$$

This is our RULE 1. The monople moment (the total charge Q) is indendent of our choice of origin. The potential does depend on the origin (because r does) but only weakly if $r \gg r_0$.

$$l=1: \quad \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} \int \rho\left(\vec{r}'\right) r' \cos\theta' \ d\tau'$$

This is the dipole potential.

$$l=2: \quad \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \int \rho\left(\bar{r}'\right) \left(r'\right)^2 P_2\left(\mu'\right) d\tau'$$

This is the quadrupole potential.

Each succeeding term decreases faster with r and so becomes less important as P gets further from the origin.

These expressions depend on the particular coordinate system that we have chosen. Most importantly, P is on the polar axis. So let's see if we can write the results in a coordinate independent way. Note that

$$\cos \theta' = \frac{\hat{r} \cdot \bar{r}''}{r'}$$

so the dipole potential is

$$V_{\text{dip ole}}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} \int \rho(\vec{r}') r' \frac{\hat{r} \cdot \vec{r}'}{r'} d\tau'$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} \hat{r} \cdot \int \rho(\vec{r}') \vec{r}' d\tau'$$

$$= \frac{1}{4\pi\varepsilon_0 r^2} \hat{r} \cdot \vec{p}$$
(3)

where

$$\vec{p} = \int \rho \left(\vec{r}' \right) \vec{r}' \ d\tau' \tag{4}$$

is the dipole moment of the charge distribution. Notice that this integral may depend on the choice of origin, because \vec{r}' does. However, if the total charge Q is zero, then \vec{p} is independent of origin. To see this, let \vec{p}_1 be the dipole moment with respect to origin 1, \vec{p}_2 with respect to origin 2, and let \vec{r}_{12} be the position of origin 2 with respect to origin 1. Then

$$\vec{p}_{1} = \int \rho(\vec{r}') \vec{r}'_{1} d\tau' = \int \rho(\vec{r}') (\vec{r}_{12} + \vec{r}'_{2}) d\tau'$$

$$= \vec{r}_{12} \int \rho(\vec{r}') d\tau' + \int \rho(\vec{r}') \vec{r}'_{2} d\tau'$$

$$= Q\vec{r}_{12} + \vec{p}_{2}$$
(5)

So if Q = 0, then $\vec{p}_1 = \vec{p}_2$.

This is an example of a more general result:

The first non-zero multipole moment is independent of origin.

Result (5) also explains the results we obtained in our very first example for the dipole moment of the two point charges. A charge that is not at the origin but at position \vec{r}_Q contributes a dipole moment $Q\vec{r}_Q$ with respect to that origin.

An ideal or "pure" dipole is located at a single point. That is, it is the dipole moment of two equal and opposite point charges separated by a distance d in the limit that $d \to 0$. In order that \vec{p} not be zero, we have to let $q \to \infty$.

$$\vec{p} = \lim_{q \to \infty} \lim_{d \to 0} q\vec{d}$$

where, as we take the limit, we hold the product qd = p constant. The vector \vec{d} points from the negative charge to the positive charge in the pair. (Griffiths uses the term "pure", but I don't like it. I think "ideal" is more appropriate.)

Equation (2) gives the potential at a point on the polar axis as a series in powers of 1/r. It does not give us the potential at other points. However, the dipole potential (3) is valid everywhere. It may be written

$$V_{\text{dip ole}}\left(r,\theta\right) = \frac{1}{4\pi\varepsilon_0 r^2} \hat{r} \cdot \vec{p} = \frac{1}{4\pi\varepsilon_0 r^2} p\cos\theta$$

where θ is the angle between \vec{p} and \vec{r} , that is, it is the polar angle in a coordinate system with polar axis along \vec{p} . Then we have

$$V_{\text{dipole}}(r,\theta) = \frac{p}{4\pi\varepsilon_0 r^2} P_1(\cos\theta)$$
 (6)

The dipole itself, remember, has z-component (from 2 with l=1)

$$p_z = \int \rho \left(\vec{r}' \right) r' P_1 \left(\mu' \right) d\tau'$$

and it is not coincidental that P_1 shows up again in (6). In fact, if our charge distribution has azimuthal symmetry about an axis that we choose as our polar axis, then we may write:

$$V(r,\theta) = \frac{1}{4\pi\varepsilon_0 r} \sum_{l=0}^{\infty} \frac{P_l(\cos\theta)}{r^l} \int \rho(\vec{r}') (r')^l P_l(\mu') d\tau'$$
 (7)

We still do not have a completely general result, and that will have to wait until Physics 704.

Example:

A hemisphere of radius a contains charge density $\rho = \rho_0 \frac{z}{a} + \rho_1 \frac{r^2}{a^2}$. Find the monople, dipole and quadrupole moments of this charge distribution, and hence find the potential at distance $r \gg a$ from the hemisphere.

The monopole is the total charge.

$$Q = \int \rho (r, \theta) 2\pi r^{2} \sin \theta d\theta dr$$

$$= 2\pi \int_{0}^{a} r^{2} dr \int_{0}^{1} \left(\rho_{0} \frac{r\mu}{a} + \rho_{1} \frac{r^{2}}{a^{2}} \right) d\mu$$

$$= 2\pi \int_{0}^{a} r^{2} dr \left(\rho_{0} \frac{r\mu^{2}}{2a} + \rho_{1} \frac{r^{2}}{a^{2}} \mu \right) \Big|_{0}^{1}$$

$$= 2\pi \left(\rho_{0} \frac{r^{4}}{8a} + \rho_{1} \frac{r^{5}}{5a^{2}} \right)$$

$$= 2\pi a^{3} \left(\frac{\rho_{0}}{8} + \frac{\rho_{1}}{5} \right)$$

The dipole moment is

$$\vec{p} = \int \rho \vec{r} d\tau = \int \rho (r, \theta) (z\hat{z} + x\hat{x} + y\hat{y}) r^2 \sin \theta d\theta d\phi dr$$

Only the z-component is non-zero, because

$$x = r \sin \cos \phi$$

and

$$\int_0^{2\pi} \cos\phi d\phi = 0$$

The y-component vanishes similarly.

Then

$$p_{z} = 2\pi \int_{0}^{a} \int_{0}^{1} \left(\rho_{0} \frac{r\mu}{a} + \rho_{1} \frac{r^{2}}{a^{2}}\right) (r\mu) r^{2} d\mu dr$$

$$= 2\pi \int_{0}^{a} \int_{0}^{1} \left(\rho_{0} \frac{r^{4}\mu^{2}}{a} + \rho_{1} \frac{r^{5}\mu}{a^{2}}\right) d\mu dr$$

$$= 2\pi \int_{0}^{a} \left(\rho_{0} \frac{r^{4}}{3a} + \rho_{1} \frac{r^{5}}{2a^{2}}\right) dr$$

$$= 2\pi a^{4} \left(\frac{\rho_{0}}{15} + \frac{\rho_{1}}{12}\right)$$

$$= \frac{2\pi a^{4}}{3} \left(\frac{\rho_{0}}{5} + \frac{\rho_{1}}{4}\right)$$

Finally the quadrupole is

$$q_{zz} = \int \rho(\vec{r}) r^2 P_2(\mu) d\tau$$

$$= 2\pi \int_0^a \int_0^1 \left(\rho_0 \frac{r\mu}{a} + \rho_1 \frac{r^2}{a^2} \right) r^2 \frac{1}{2} \left(3\mu^2 - 1 \right) r^2 dr d\mu$$

$$= \pi \int_0^a \int_0^1 \left(\rho_0 \frac{r^5}{a} \left(3\mu^3 - \mu \right) + \rho_1 \frac{r^6}{a^2} \left(3\mu^2 - 1 \right) \right) dr d\mu$$

$$= \pi \int_0^a \left(\rho_0 \frac{r^5}{a} \left(\frac{3}{4} - \frac{1}{2} \right) + \rho_1 \frac{r^6}{a^2} \left(1 - 1 \right) \right) dr$$

$$= \pi a^5 \frac{\rho_0}{6} \left(\frac{1}{4} \right) = \pi a^5 \frac{\rho_0}{24}$$

Thus the potential is

$$V(r,\theta) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{Q}{r} + \frac{p_z \cos \theta}{r^2} + \frac{q_{zz}}{r^3} P_2(\cos \theta) + \cdots \right\}$$

$$= \frac{\pi a^3}{4\pi\varepsilon_0 r} \left\{ 2\left(\frac{\rho_0}{8} + \frac{\rho_1}{5}\right) + \frac{2a}{3r} \left(\frac{\rho_0}{5} + \frac{\rho_1}{4}\right) \cos \theta + \frac{\rho_0}{24} \frac{a^2}{r^2} \frac{1}{2} \left(3\cos^2 \theta - 1\right) + \cdots \right\}$$

$$= \frac{\pi a^3}{4\pi\varepsilon_0 r} \left\{ \frac{\rho_0}{4} + 2\frac{\rho_1}{5} + \frac{2a}{3r} \left(\frac{\rho_0}{5} + \frac{\rho_1}{4}\right) \cos \theta + \frac{\rho_0}{48} \frac{a^2}{r^2} \left(3\cos^2 \theta - 1\right) + \cdots \right\}$$

Are there more terms? Yes there are.

$$\int \left(\rho_0 \frac{r\mu}{a} + \rho_1 \frac{r^2}{a^2}\right) r^l P_l(\mu) d\tau = \frac{2\pi}{a} \int_0^a r^{l+3} dr \int_0^1 \left[\rho_0 \mu P_l(\mu) + \rho_1 \frac{r}{a} P_l(\mu)\right] d\mu$$

Now if l is even, then $P_l(\mu)$ is an even function of μ , but $\mu P_l(\mu)$ is odd. But if l is odd, then $\mu P_l(\mu)$ is even. For an even function

$$\int_{0}^{1} f(\mu) d\mu = \frac{1}{2} \int_{-1}^{1} f(\mu) d\mu$$

Thus for l even

$$\int_{0}^{1} P_{l}(\mu) d\mu = \frac{1}{2} \int_{-1}^{1} P_{0}(\mu) P_{l}(\mu) d\mu = 0 \text{ unless } l = 0$$

We already found that this is true for l=2 above. Then for l odd

$$\int_{0}^{1} \mu P_{l}(\mu) d\mu = \frac{1}{2} \int_{-1}^{1} P_{1}(\mu) P_{l}(\mu) d\mu = 0 \text{ unless } l = 1$$

Thus there are higher multipoles, but for l>1, all even multipoles involve only ρ_0 but all odd multipoles involve only ρ_1 .

Plot

$$V(r,\theta) = \frac{\pi a^3 \rho_0 a}{4\pi \varepsilon_0 a r} \left\{ \frac{1}{4} + 2 \frac{\rho_1}{5\rho_0} + \frac{2a}{3r} \left(\frac{1}{5} + \frac{\rho_1}{4\rho_0} \right) \cos \theta + \frac{1}{48} \frac{a^2}{r^2} \left(3\cos^2 \theta - 1 \right) + \cdots \right\}$$

Thus

$$\frac{V\left(r,\theta\right)}{\frac{\pi a^{3} \rho_{0}}{4\pi \epsilon_{0} a}} = \left(\frac{1}{4} + 2\frac{\rho_{1}}{5\rho_{0}}\right) \frac{a}{r} + \frac{2a^{2}}{3r^{2}} \left(\frac{1}{5} + \frac{\rho_{1}}{4\rho_{0}}\right) \cos\theta + \frac{1}{48} \frac{a^{3}}{r^{3}} \left(3\cos^{2}\theta - 1\right) + \cdots$$

Now suppose $\rho_1 = \rho_0/2$. Then

$$\frac{V(r,\theta)}{\frac{\pi a^3 \rho_0}{4\pi \varepsilon_0 a}} = \left(\frac{1}{4} + \frac{1}{5}\right) \frac{a}{r} + \frac{2a^2}{3r^2} \left(\frac{1}{5} + \frac{1}{8}\right) \cos \theta + \frac{1}{48} \frac{a^3}{r^3} \left(3\cos^2 \theta - 1\right) + \cdots
= \frac{9}{20} \frac{a}{r} + \frac{13}{60} \frac{a^2}{r^2} \cos \theta + \frac{1}{48} \frac{a^3}{r^3} \left(3\cos^2 \theta - 1\right) + \cdots$$

Green 0.15, Black 0.1 red 0.05

Notice how the equipotential surfaces get more spherical as distance from the hemisphere (in blue) increases.