
Multipole expansions
We have frequently referred to our RULE 1: far enough away from any

charge distribution with net charge Q, the potential is approximately that due
to a point charge Q located in the distribution. We also found from our very
first example that the next correction is a dipole. The dipole potential falls o¤
faster (/ 1/r2) than the point charge (or monopole) potential (/ 1/r). Now
we’d like to make these ideas more precise.

We have a charge distribution with charge density ρ (~r 0) . We put the origin
somewhere inside the distribution, and we put the polar axis in a spherical
coordinate system through a point P at which we want to find the potential.
The entire charge distribution is located inside a sphere of radius r0 and P is
outside that sphere.

Then the potential at P is
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In fact, as P gets farther from the charge distribution, ε becomes much less
than 1. So we expand the square root
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I’ll let you check the next few. In fact
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Now we put this result into our integral (1) for the potential:
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This is the multipole expansion of the potential at P due to the charge distrib-
ution. The first few terms are:
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This is our RULE 1. The monople moment (the total charge Q) is indendent of
our choice of origin. The potential does depend on the origin (because r does)
but only weakly if r À r0.
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This is the dipole potential.

l = 2 :
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This is the quadrupole potential.
Each succeeding term decreases faster with r and so becomes less important

as P gets further from the origin.
These expressions depend on the particular coordinate system that we have

chosen. Most importantly, P is on the polar axis. So let’s see if we can write
the results in a coordinate independent way. Note that

cos θ0 =
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r 0

so the dipole potential is
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where

~p =

Z
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is the dipole moment of the charge distribution. Notice that this integral may
depend on the choice of origin, because ~r0 does. However, if the total charge Q
is zero, then ~p is independent of origin. To see this, let ~p1 be the dipole moment
with respect to origin 1, ~p2 with respect to origin 2, and let ~r12 be the position
of origin 2 with respect to origin 1. Then
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~p1 =
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So if Q = 0, then ~p1 = ~p2.
This is an example of a more general result:

The first non-zero multipole moment is independent of origin.

Result (5) also explains the results we obtained in our very first example for
the dipole moment of the two point charges. A charge that is not at the origin
but at position ~rQ contributes a dipole moment Q~rQ with respect to that origin.

An ideal or "pure" dipole is located at a single point. That is, it is the
dipole moment of two equal and opposite point charges separated by a distance
d in the limit that d ! 0. In order that ~p not be zero, we have to let q ! 1.

~p = lim
q!1

lim
d!0

q ~d

where, as we take the limit, we hold the product qd = p constant. The vector
~d points from the negative charge to the positive charge in the pair. (Gri¢ths
uses the term "pure", but I don’t like it. I think "ideal" is more appropriate.)

Equation (2) gives the potential at a point on the polar axis as a series in
powers of 1/r. It does not give us the potential at other points. However, the
dipole potential (3) is valid everywhere. It may be written
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where θ is the angle between ~p and ~r, that is, it is the polar angle in a coordinate
system with polar axis along ~p. Then we have

Vdipole (r,θ) =
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The dipole itself, remember, has z¡component (from 2 with l = 1)

pz =

Z
ρ (~r 0) r0P1 (µ0)dτ 0

and it is not coincidental that P1 shows up again in (6). In fact, if our charge
distribution has azimuthal symmetry about an axis that we choose as our polar
axis, then we may write:
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We still do not have a completely general result, and that will have to wait until
Physics 704.

Example:
A hemisphere of radius a contains charge density ρ = ρ0

z
a

+ ρ1
r2

a2 . Find the
monople, dipole and quadrupole moments of this charge distribution, and hence
find the potential at distance r À a from the hemisphere.

The monopole is the total charge.
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The dipole moment is

~p =

Z
ρ~rdτ =

Z
ρ (r, θ) (zẑ + xx̂ + yŷ) r2 sin θdθdφdr

Only the z¡component is non-zero, because

x = r sin cos φ

and Z 2π

0

cos φdφ = 0

The y¡component vanishes similarly.
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Then
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Finally the quadrupole is
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Thus the potential is
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Are there more terms? Yes there are.
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Now if l is even, then Pl (µ) is an even function of µ, but µPl (µ) is odd. But if
l is odd, then µPl (µ) is even. For an even function
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Thus for l even
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We already found that this is true for l = 2 above. Then for l odd
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Thus there are higher multipoles, but for l > 1, all even multipoles involve only
ρ0 but all odd multipoles involve only ρ1.
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Now suppose ρ1 = ρ0/2. Then
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Notice how the equipotential surfaces get more spherical as distance from

the hemisphere (in blue) increases.
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