
Separation of variables in spherical coordinates
The previous solutions worked well because we were concerned with a region

whose boundaries were easily described in Cartesian coordinates. The bound-
aries were flat and corresponded to constant values of x, y or z. If our boundary
is a sphere r = constant, the region is most easily described in spherical coordi-
inates.
Laplace’s equation in spherical coordinates is
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This looks like a mess, because the three coordinates r, θ, φ are all mixed up in
each term but the first. We are going to make life a bit easier for ourselves by
restircting attention to problems that have azimuthal symmetry: that is, there
is one axis that we can rotate about without changing our system at all. We
make this axis the polar axis in our spherical coordinate system. Then the
potential is independent of φ and the last term in our equation is identically
zero, leaving:
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or, multiplying by r2, we have
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Now we can look for a separable solution of the form

V (r, θ) = R (r)P (θ)

Stuffing in, we get
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and dividing by V = RP, we have the separated equation
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Now we make an argument similar to the one we made in Cartesian coordinates.
Suppose we move around the surface of a sphere at constant radius, changing θ
but not r. We could change the second term without changing the first. Thus
both terms must be constants:

1

R

∂

∂r

µ
r2
∂R

∂r

¶
= k (2)

1

P sin θ

∂

∂θ

µ
sin θ

∂P

∂θ

¶
= −k (3)
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The two constants are equal and opposite because they have to sum to zero.
But what do we choose for k? Referring to our standard method, we have to
first find the solutions to these ordinary differential equations. It turns out that
the key to choosing k comes from the θ−equation.
In spherical coordinates if it often convenient to use the variable μ = cos θ.

Then our volume element r2 sin θdθdφdr = −r2dμdφdr. This change of variable
also simplifies the differential equation since

d

dμ
=

1

− sin θ
d

∂θ

Then equation (3) becomes

d
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¢ dP
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¸
+ kP = 0

We can solve this equation using a series method. We express the solution P
as a power series in μ.
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=
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With an equation like this, the coefficient of every power of μ must separately
equal zero. So we start with μ0 and work our way up. We get μ0 in the first
term if n = 2, in the second and third terms if n = 0 (but these term are
identically zero), and in the last terms if n = 0. So the coefficient of μ0 is

2× 1a2 − 0− 0 + ka0 = 0

So

a2 =
−ka0
2
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Next we look at μ1 = μ

3× 2a3 − 0− 2a1 + ka1 = 0

a3 =
(2− k) a1

6

And for μ2

4× 3a4 − 2× 1a2 − 2× 2a2 + ka2 = 0

a4 =
a2 (2× 3− k)

4× 3 = −(6− k)

12

k

2
a0

and in general for μp

(p+ 2) (p+ 1) ap+2 − p (p− 1) ap − 2pap + kap = 0

ap+2 = ap
p (p+ 1)− k

(p+ 2) (p+ 1)
(4)

If we start our solution witth a non-zero a0, we will get a solution with only
even powers of μ, but if we start with a non-zero a1, we will get a solution with
odd powers. These are the two solutions to our second order equation. One
solution is even in μ and one is odd in μ.
The ratio of successive terms in the series is

ap+2μ
p+2

apμp
=

p (p+ 1)− k

(p+ 2) (p+ 1)
μ2

For μ < 1,
p (p+ 1)− k

(p+ 2) (p+ 1)
μ2 → μ2 < 1 as p→∞

so the series converges nicely. But if μ = ±1,
p (p+ 1)− k

(p+ 2) (p+ 1)
μ2 → μ2 = 1

While the ratio test is not definitive in this case, it turns out that this series
does not converge for μ = ±1, that is for θ = 0 and θ = π. But there is no
physical reason for the potenial to blow up along this line (the polar axis). So
what do we do? We force the series to terminate after a finite number of terms
by choosing our constant k to equal l (l + 1) for some integer l. Then equation
(4) gives

al+2 = al
l (l + 1)− l (l + 1)

(l + 2) (l + 1)
= 0

and since al+4 is proportional to al+2 it is zero too. In fact, all the ap with
p > l are zero. So the series stops with the term in μl. The resulting solutions
are the Legendre polynomials. The constant a0 (or a1) is not determined from
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the differential equation, so we define each polynomial to have the value 1 when
its argument is 1, and that fixes a0. The first few polynomials are:

P0 (μ) = 1

P1 (μ) = μ

P2 (μ) =
1

2

¡
3μ2 − 1¢

P3 (μ) =
1

2

¡
5μ3 − 3μ¢

and so on. You should verify that these polynomials satsify the differential
equation.
If l is even, we get a polynomial in even powers. The second solution that

starts with a1 will never terminate since p (p+ 1) with p odd can never equal
l (l + 1) with l even. Thus this solution diverges on the polar axis and we will
not want to do use this solution.
Ok so now we know that k = l (l + 1) , so the equation (2) for R is
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This equation is satisfied by a single power of r, R = rp, for then

dR

dr
= prp−1

r2
dR

dr
= prp+1

d

dr

µ
r2
dR

dr

¶
= (p+ 1) prp = p (p+ 1)R = l (l + 1)R

So clearly R = rl is one solution. The second solution has p = − (l + 1) ,
p + 1 = −l so that p (p+ 1) = − (l + 1) (−l) = (l + 1) l. Thus the azimuthally
symmetric solution to Laplace’s equation isµ

Arl +
B

rl+1

¶
Pl (cos θ)

where l may be any integer. Then as in the Cartesian case we form the general
solution as a linear combination of these terms with different l :

V (r, θ) =
∞X
l=0

µ
Alr

l +
Bl

rl+1

¶
Pl (cos θ) (5)

Special cases:
l = 0 The solution looks like

A+
B

r
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The first term is a constant potential, and the second is the potential due to a
point charge at the origin.

l = 1

Ar cos θ +
B cos θ

r2

The first term is Az and this gives us a uniform field �E = −�∇V = −Aẑ. The
second term is a dipole potential with the dipole aligned along the z−axis.
The positive powers of r diverge as r →∞ while the negative powers diverge

as r → 0. Thus if our region R is the inside of a sphere, we’ll want to use the
positive power solutions and not the negative powers. The exception is if there
is some charge at the origin that causes the potential to diverge there. On
the other hand, if our region R is outside a spherical boundary, we will have a
solution with negative powers and no positive powers. The exception would be
the l = 1 term that allows for a uniform field outside the sphere.
If we know the potential V0 (θ) on a spherical surface r = a, the potential

outside the sphere is

V (r > a, θ) =
∞X
l=0

Bl

rl+1
Pl (cos θ)

with

V0 (θ) = V (a, θ) =
∞X
l=0

Bl

al+1
Pl (cos θ)

We can find the coefficients Bl because the Legendre Polynomials also have the
properties of completeness and orthogonality that the sine functions have. The
integralZ +1

−1
Pl (μ)Pm (μ) dμ =

Z ∞
0

Pl (cos θ)Pm (cos θ) sin θdθ = 0 if l 6= m

If l = m the integral is:Z +1

−1
[Pl (μ)]

2 dμ =

Z π

0

[Pl (cos θ)]
2 sin θdθ =

2

2l + 1

Thus:Z +1

−1
V0 (θ)Pm (μ) dμ =

Z +1

−1

∞X
l=0

Bl

al+1
Pl (μ)Pm (μ) dμ =

∞X
l=0

Bl

al+1

Z +1

−1
Pl (μ)Pm (μ) dμ

=
Bm

am+1
2

2m+ 1

So in principle we have a solution.
If the potential on the surface is V0 (θ) = V0 cos

2 θ, we have

Bm = am+1
2m+ 1

2
V0

Z +1

−1
μ2Pm (μ) dμ
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Now note that
P2 (μ) =

1

2

¡
3μ2 − 1¢

so
μ2 =

2

3
P2 (μ) +

1

3
=
2

3
P2 (μ) +

1

3
P0 (μ)

Then Z +1

−1
μ2Pm (μ) dμ =

Z +1

−1

∙
2

3
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3
P0 (μ)

¸
Pm (μ) dμ

The integral is zero unless m = 0 or m = 2.
For m = 0 :Z +1

−1

∙
2

3
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3
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¸
P0 (μ) dμ = 0 +

1

3

2

2× 0 + 1 =
2

3
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2

2

3
=
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3

and for m = 2Z +1
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¸
P2 (μ) dμ =

2

3

µ
2

2× 2 + 1
¶
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3 5
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2
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3

So the potential function is:

V (r, θ) =
V0
3

µ
a

r
+ 2

a3

r3
P2 (cos θ)

¶
=

V0
3

µ
a

r
+ 2

a3

r3
1

2

¡
3 cos2 θ − 1¢¶

=
V0
3

∙
a

r
+

a3

r3
¡
3 cos2 θ − 1¢¸

Check that this solution does have the correct value at r = a.
Another example
An uncharged, conducting sphere is placed in a region where the electric

field is uniform, �E = �E0. Find the electric field in the region after the sphere is
put in place.
First let’s see if we can figure out what happens. We know that the field

inside the conducting sphere must be zero, and that charges will move to the
surface of the sphere to make this happen. The electric field lines outside the
sphere must begin or end on these surface charges, and the field lines meet the
sphere at right angles. The charge distribution is odd in θ, so we expect l odd.
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We place the polar axis along the direction of the uniform field. Then the
system has azimuthal symmetry about this line, and the potential outside the
sphere may be expressed as (5)

V (r > a, θ) =
∞X
l=0

µ
Alr

l +
Bl

rl+1

¶
Pl (cos θ)

There are only two non-zero Al. The l = 0 term gives us a constant potential
A0. With l = 1 we get the uniform field.

A1rP1 (cos θ) = −E0z ⇒ A1 = −E0
The other Al are all zero so that the field approaches �E0 as r → ∞. Now we
have

V (r > a, θ) = A0 −E0r cos θ +
∞X
l=0

Bl

rl+1
Pl (cos θ)

The next boundary condition is that V =constant at r = a. We may put our
reference point on the sphere and choose that constant to be zero. Then

0 = A0 −E0aP1 (θ) +
∞X
l=0

Bl

al+1
Pl (cos θ)

= A0 +
B0
a
+

µ
B1
a2
− E0a

¶
P1 (cos θ) +

∞X
l=2

Bl

al+1
Pl (cos θ)

Now since the Pl are orthogonal functions, the coefficient of each one must
separately equal zero. We can show this by muliplying the whole equation
by Pm (μ) and integrating from −1 to +1. Only the terms in Pm survive the
integration.
Uisng this principle, we can see right away that

Bl = 0 for l > 1

B1 = E0a
3

B0 = −aA0
Note here that the B0 term gives us the "point charge" potential, but using
RULE 1 and the fact that this sphere is uncharged, we must have B0 = A0 = 0.
Thus our solution is

V (r > a, θ) = −E0r cos θ +E0a
³a
r

´2
cos θ

The second term is a dipole potential, which is not surprising because our qual-
itative picture shows the charge separating with positive charge on one hemi-
sphere of the sphere and negative on the other.
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Cylindrical coordinates- 2 dimensions
If our system is 2-dimensional (planar, or infinite in z) with boundaries

that are circles (r =constant) or planes (φ =constant) we should use polar
coordinates in a plane:
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µ
r
∂V
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¶
+
1

r2
∂2V

∂φ2
= 0

Using the usual method, we look for a solution of the form

V = R (r)W (φ)

so that
r

R

∂

∂r

µ
r
∂R

∂r

¶
+
1

W
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The first term is a function of r only and the second a function of φ only, so
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∂r

µ
r
∂R
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¶
= k

1

W

∂2W

∂φ2
= −k

If our region includes a full circle, then each 2π range of the angle φ gives the
same region of physical space. The coordinates (r, φ) and (r, φ+ 2π) describe
the same point. So our function W must be periodic with period 2π. So we
choose k to be m2 where m is an integer. Then the solution for W is

W = Am sinmφ+Bm cosmφ

Then the equation for R is

r
∂

∂r

µ
r
∂R

∂r

¶
= m2R

The solution is a power R = rp where

r
∂

∂r

µ
r
∂R

∂r

¶
= r

∂

∂r

¡
rprp−1

¢
= rp2rp−1 = p2R

so
p = ±m

So one term in our solution looks like

(Am sinmφ+Bm cosmφ)
¡
rm + Cmr

−m¢
But wait a minute— a line charge potential V = − λ

2πε0
ln r should be one of our

solutions! Oh, yes, we forgot the special case m = 0. For this case

∂

∂r

µ
r
∂R

∂r

¶
= 0

r
∂R

∂r
= C0

R = C0 ln ρ+K0
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and

∂2W

∂φ2
= 0

W = α0 + β0φ

Since the function φ is not periodic we can use it only if our region is an angular
wedge of space, with boundaries at φ = θ1 and φ = θ2.
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