Separation of variables
The idea here is to try to find a solution to Laplace’s equation that is a
product of functions, each of which depends on only one of the variables. We
start with a 2-D problem in Cartesian coordinates. Then we look for a solution
of the form
Viz,y) =X (@)Y (y)
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Now divide the whole equation by V' = XY, and we have
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Here the first term is a function of x but not y and the second is a function
of y but not x. The equation must be satisfied for all values of x and y in our
region. Suppose we have satisfied the equation at some point zg, yo. If we move
along a line at constant x = xy while changing y, we could change the value of
the second term but leave the first unchanged. Thus the equation would not
be satisfied at z = x¢, y # yo unless the second term were constant. Thus we
must have
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where k is a constant, and then we must also have
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so that equation (1) remains satisfied. We have replaced one, linear, second
order partial dicerential equation with two, coupled, linear, ordinary, second
order dicerential equations. Both ordinary dicerential equations are of the form
d*w
-7 = Cw )
where C = +k. If C is positive, C = 2, then the solution is an exponential
function
w = Ael? + Be P (©))

while if C is negative, C = —a?, the solution is a combination of sine and cosine:
w = Asin (au) + B cos (au) (@)

Here is where the boundary conditions become important. There are several
dicerences between the solutions (3) and (4). The sines and cosines in (4) are
periodic and take the value zero twice every period. On the other hand the
exponential functions in (3) are not periodic and do not take the value zero
anywhere. (We can form the linear combination w = sinh au = 3 (™" — e~ %)



that is zero at one, and only one, point v = 0.) One exponential function (")
is unbounded as © — oo; all the other functions remain bounded. Further, we
know that any reasonably well-behaved function on the range 0 < v < 27 may
be expanded in a Fourier series

o
fu)= Z Gy, sin nu + by, cos nu

n=0

(This property of sines and cosines is called "completeness'.) We can use these
properties to figure out what the solution must be.

We start with a region that is a rectangular box measuring a x b. Its length
in the third dimension is either infinite or zero. We put the z and y—axes along
the two finite sides of the box. Then the potential is independent of z. Now
suppose the sides at x = 0 and x = a and at y = 0 are all grounded, but the
potential on the side at y = b is non-zero V (z,b) = Vy (z).

Since the potential is zero at two values of x, we must choose the periodic
functions as the apropriate solutions for X. That means that we need & to be
positive, k = o. Further, if the solution is zero at = = 0, the correct solution
is the sine. Then we have

X (z) =sin(az)=0atz=0

Now to make the solution zero at z = a, we need
. . nm
sinaa =0 =sinnr = q = —

for any integer n. Then the equation for Y becomes
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with solution
Y = Ae®Y + Be™ Y

Notice that since we chose & to be positive, one set of solutions (here X') are sines
and cosines while the other set (Y') are exponentials. This is forced upon us
because the sum of the two constants must be zero so that the partial dicerential
equation is satisfied. It is never possible for both sets of functions to be sines
and cosines.

Now we take the other surface on which V' = 0 and make our solution satisfy
that boundary condition. At y = 0 we have

A+B=0=B=-4A

and then nr
Y=A4 (e“y — e’ay) = 2Asinh ay = 24 sinh —%
a

So far we have a solution
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This function satisfies the dicerential equation and the boundary conditions on
3 of the four sides of the box. This is a solution to the dizerential equation, not
the solution to the problem, because it does not satisfy the remaining boundary
condition at y = b. But we can have any integer value for n. Thus the solution
we need is a linear combination of such functions with dizerent values of n :
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We have one boundary condition to go. On the sideaty =b:
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is the coeCcient in the Fourier sine series for V; (). Now we proceed using the
usual method for finding the coeCcients in a Fourier series. We use a property
of the sines called orthogonality:
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So we multiply both sides of equation (5) by sinmnz/a and integrate from 0 to
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We interchange the sum and the integral on the left. (This is legal. See Lea
Ch 6 for the reasons why.)

0 a a
. nwb . MTx . MTT . mmx
E A,, sinh =— dr = Vo (x)sin
a 0 a a 0
n=1

and use result (6). The integral on the left is zero unless n = m. But since the
sum is over all n, one of the values will be m, and that is the only value that
gives a non-zero result. Thus the infinite sum reduces to one term:
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In principle we are done, but to get values for the coe¢cients A,, we’ll need a
specific function V4 () .

Suppose our box has insulating stripsatz =0,y =bandat z =a/2, y =
with the potential 15 (z) = Vo for 0 < = < a/2 and zero for a/2 < z < a. then
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Then, combining (8) and (7), we have
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So the first few terms are
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Terms up to m =5




m = 10

=20

We can see the correct boundary conditions appearing as we increase m. The
series converges well if y < b, but convergence gets slower as y — b. This is a
characterisic of these types of solutions.
Solution in three dimensions.
In 3-d Laplace’s equation is
9 o’V 9’V PV
VYV = 502 + 7 + 52 =0

and now we look for a separated solution of the form

V=X(@)Y{y)Z()

Stu¢ng in, we get

0°X 0%y *Z
Y4+ X—/4+XY—=0
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and dividing by XY Z, we have
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We have succeeded in separating the equation into three terms, each of which
depends on only one of the three variables x,y and z. So again we can imag-
ine moving along a line with constant = and y, letting only z change. This
would change the third term Z” /Z without changing the other two, disturbing
the equality. We must prohibit this possibility by requiring this term to be a
constant.
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We can make the same argument about the second term by moving along a line
with z and z constant and only y varying. Thus
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Inserting these values back into the dizcerential equation (9), we have
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All three of our equations are now of the form (2) with solutions of the form (3)
or (4).

To see how the solution goes, let’s consider an infinite slot that extends from
x = 0 out to infinity, from y = 0 to y = a, and from 2z = 0 to z = b. Suppose
that the surface at x = 0 is a uniformly charged sheet, with charge density o.
There are narrow insulating strips at the edges, and the other four surfaces at
y =0,aand z = 0,b are grounded conductors.

As before we start with one of the coordinates that has two boundary con-
ditions that are zeros. So let’s start with y. We need a function that is zero at
two places: y = 0 and y = a. So we must choose a sine (because sinay = 0
when y = 0) and then we must force another zero of the sine function to be at

y = a by picking @ = nw/a. That makes our constant k, = —a? = — (nw/a)’.
Y =sin 27y
a

Now we do something similar with the function of z. Again we need the
sine, with the constant chosen to make the function zero again at z = b. Thus
ki = — (mm/b)* and

7 = sin (mm)
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Now we have the equation for X : itis
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The constant k3 must be positive because both k; and &, are negative. The sum
of all three constants has to be zero. That means that our solutions for x have
to be exponentials. We have two more boundary conditions to satisfy. The first
is that X — 0 as z — oo, and this means we need the negative exponential:
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X — exp [_\/@) - (22)s
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Finally, we have to match our solution to the charge density o at x = 0. The
charge sits on a thin insulator, on top of a conductor. That allows us to make

the charge density anything we like, with zero field on the other (z < 0) side in
the conductor. Then we need
o oV 8X

EL:_:_

€0 0X =0 8X

As before, single values of n and m will not do this for us, and we will need a
linear combination. This time it is a double sum over both n and m.
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with the boundary condition
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This is a Fourier series for o and we find the coe€ cients in the usual way. This
time we have to use the orthogonality of the sines twice: once in i and once in
z. First multiply both sides of the equation by sin (p7y/a) and integrate over y
from 0 to a.
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Interchange the sum and the integral on the right, and move everything that
does not depend on y out of the integral:
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The integral on the right is zero except for the one term with n = p. So we have
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Now we do it again, this time multiplying by sin gz /b

copm m=1
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Aha!l We have isolated the constant A,,.
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But cospm = +1 if piseven, so 1 —cospr =0, and cos pr = —1 if p is odd, and
in that case 1 — cospm = 2. Thus A, is zero unless both p and ¢ are odd, and
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and then the potential is
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The result has the correct physical dimensions of charge/ (o xlength) (remember
that o =charge/length?) and the series converges very rapidly, both because of

the denominator nm/ (&%) + (&&)?, and, for z > 0, the exponential function.
As we saw in the 2-d case, convergence is worst right at the boundary where V/
is non-zero.

Let’s review the method step by step.

Separation of variables method for solving Laplace’s equation.

e 1. Separate the PDE into 2 (or 3) coupled ODEs. Note that the sepa-
ration constants must sum to zero. Start with a coordinate that has
zero potential or zero £, on the constant coordinate surfaces (for
example V.=0at z=0and z = a).

2. Determine the possible set of solutions of the ODE in your chosen
coordinate. Since it is a second order equation, it will have two
possible solutions.

3. Find the correct function (of the two possible functions you found in
step 2) using one of the two boundary conditions.

4. Find the separation constant using the second boundary condition.

5. Repeat steps 2-4 for the second coordinate, if V' depends on 3 coor-
dinates.
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6. At this point you know the complete equation for the third function.
Solve it, using the last zero boundary condition to determine the
correct function (of the two possible functions you found in step 2).

7. Form a linear combination of the solutions you have identified using
steps 1-6.

8. Use orthogonality together with your final boundary condition to
determine the constants in your solution.



