
Method of images
Suppose that our region R is the half-universe z > 0, and the bounding

surface S comprises an infinite, grounded, conducting plane at z = 0 as well as
a surface at infinfity on the positive z side. We do not know, nor care, what
is happening at z < 0. Now suppose that there is a point charge q at point
P in our region, distance d from the conducting plane. What is the resulting
potential in R?

Well, we can guess what is going to happen. Charge of sign opposite q will
be drawn along the conducting plane, and the field lines emanating from q will
attach to these charges on the plane, meeting the plane at right angles. We can
calculate the resulting potential by imagining a problem that extends into the
region z < 0, and is mirror symmetric about the plane, with a negative charge
¡q at distance d from the plane, but on the negative z side. Now every point
on the plane is at the same distance from each of the charges, and thus has
potential zero.

Put the z¡axis through the charge q, and let P on the plane be a distance s
from the origin. Then

V (P ) =
kqp

d2 + s2
¡ kqp

d2 + s2
= 0

Since this system gives the correct potential on the plane, and at z ! 1 (where
it is zero), and it satisfies the di¤erential equation r2V = ¡ρ/ε0 in R it must
be the correct solution. The charge ¡q does not contribute to ρ since it is not
in R. We don’t care what equation V satisfies for z < 0 since that region is not
in R! Using this model, the potential at a point in R is

V (~r) =
kqq

x2 + y2 + (z ¡ d)
2

¡ kqq
x2 + y2 + (z + d)

2

This model cannot give us a solution for the potential for z < 0.
Once we have this solution, we can find it to get the charge density on the
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plane at z = 0.
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The charge density is negative and is circularly symmetric about the z¡axis, as
expected. It is also maximum at s = 0, the closest point to the charge q. The
plot shows 2πσ/qd2 versus s/d.
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The total charge on the plane is

Q =

Z 1

0

σ (s) 2πsds = ¡
Z 1

0

qd

(s2 + d2)3/2
sds

Let u = s2 + d2, with du = 2sds so that

Q = ¡ qd

2

Z 1

d2

du

u3/2
= ¡ qd

2

¡2

u1/2

¯̄
¯̄
1

d2

= ¡q

Now we see that the image charge ¡q represents the e¤ect of the induced charge,
also ¡q, on the plane.

The negative charge on the plane attracts the charge q toward the plane.
We can compute the force on the charge q at z > 0 using the image charge ¡q
that represents the charge on the plane.

Fz = ¡ kq2

(2d)2
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You can verify this, if you have the stomach for it, by integrating σ2/2ε0 over
the plane. Or you can take my word for it.

Now let’s look at the energy. The energy of the two-charge system is

U = ¡kq2

2d

But remember that the energy is stored in the field throughout space. But our
real space R is only half as big as the space in whch this energy exists. So we
might expect that the energy in the "plane plus one charge" system is

U = ¡kq2

4d
(1)

We can verify this in the usual way, by computing the work done to assemble
the system. We bring our charge q in from infinity. When the charge is at
coordinate z, its image is at ¡z to make the potential on the plane zero, and
thus the force attracting q to the plane is

F (z) =
kq2

(2z)2

Now we actually have to pull on the charge with a force of this magnitude to
prevent it from accelerating toward the plane. So the work done is negative.
The displacement d~s = dzẑ is in the negative z¡ direction, because each dz is
negative as we reduce the value of z from 1 to d.

W =

Z
~F ¢ d~s =

Z d

1

kq2

(2z)
2 ẑ ¢ dzẑ =

Z d

1

kq2

(2z)
2dz

= ¡kq2

4z

¯̄
¯̄
d

1
= ¡kq2

4d

which agrees with (1) above.
How would the solution change if the potential on the plane is V0 6= 0?
Images in a sphere
Here our region R is the region outside a grounded, conducting sphere of

radius a. We have a point charge q outside the sphere at a distance d from the
center of the sphere. Can we solve this problem with images? The system of
sphere plus point has rotational symmetry about a line throught he center of
the sphere and the charge, so if there is an image in the sphere, it must be on
that same line. We don’t know the magnitude or position of the charge, so let’s
let the charge be q0 at a distance d0 from the center of the sphere. With two
unknowns, we need two equations to find them, so we pick two points on the
sphere. The easiest points to work with are the two points P and Q on the line
of symmetry:
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V (P ) =
kq0

a + d
+

kq

d + a
= 0

and, with d > a > d0,

V (Q) =
kq0

a ¡ d0 +
kq

d ¡ a
= 0

Thus

q0 (d + a) + q (a + d0) = 0

q0 (d ¡ a) + q (a ¡ d0) = 0

Add the two equations to get

2q 0d + 2qa = 0 ) q0 = ¡q
a

d
(2)

and subtract the two equations to get

2q 0a + 2qd0 = 0 ) d0 = ¡ q0a

q
=

a2

d
(3)

These results show that q and q0 have opposite signs, as expected, and q0 is
inside the sphere if q is outside.

Now we need to check that this solution makes the whole surface of the
sphere have zero potential: At an arbitrary point with polar angle θ, we have

V =
kq 0

q
a2 + (d0)2 ¡ 2ad0 cos θ

+
kqp

a2 + d2 ¡ 2ad cos θ

=
¡kqa/dq

a2 + (a2/d)
2 ¡ 2 (a3/d) cos θ

+
kqp

a2 + d2 ¡ 2ad cos θ

=
¡kq/dq

1 + (a/d)
2 ¡ 2 (a/d) cos θ

+
kqp

a2 + d2 ¡ 2ad cos θ

=
¡kqp

d2 + a2 ¡ 2ad cos θ
+

kqp
a2 + d2 ¡ 2ad cos θ

= 0
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So it works!
Once again we note that this model gives the correct potential outside the

sphere, but not inside. Of course we already know the potential inside— it is
zero! (Make sure that you understand why.)
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