
Potential
The work done by the electric field on a particle with charge q that moves

from a point A to a second point P is

W =

Z
dW

where dW is the work done as the particle moves through a displacement d~s

dW = ~F ¢ d~s = q ~E ¢ d~s

Thus

W =

Z B

A

q ~E ¢ d~s

If we are dealing with static electric fields, the force is conservative, that is, the
work done is independent of the path we choose between points A and B. We
can check this assertion using one of the fields we have already found: say, the
field due to an infinite line charge.

W = q

Z B

A

λ

2πrε0
r̂ ¢ d~s

The dot product selects the radial component of d~s, leaving

W = q
λ

2πε0

Z B

A

dr

r
= q

λ

2πε0
ln

rB

rA

The result depends only on the radial coordinates of the points A and B, inde-
pendent of the path taken from one to the other.

Thus we can express the work done as the change in potential energy of the
system. The work done by the system reduces the stored energy in the system.
Thus

W (A ! B) = U (A) ¡ U (B) = q
λ

2πε0
ln

rB

rA

where the final expression is for the particular system (line charge) that we
used above. Since the value of the test charge that we moved comes out of the
integrals, we can use a trick similar to what we did in defining electric field. We
define a field quantity called potential as follows

V (A) ¡ V (B) =
1

q
W (A ! B) =

Z B

A

~E ¢ d~s (1)

The integral on the far right depends only on the electric field ~E, and the two
points A and B.

Some people like to write the result with a minus sign, by flipping the limits:

V (A) ¡ V (B) = ¡
Z A

B

~E ¢ d~s
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It doesn’t matter which way you do it, so long as you remember that the integral
is a path integral along a path that you may choose from one point (the "lower
limit") to the other (the "upper limit"). A trick I use to get the signs right is
to remember that "Potential decreases along field lines". If we go along a field
line in the direction of ~E, we are going toward lower potental.

As with potential energy, there is an arbitrary constant in this definition.
We can set this constant by choosing a reference point R at which we set V ´ 0.
Then we may write our line integral as follows:

V (A) ¡ V (B) =

Z B

A

~E ¢ d~s

V (A) ¡ 0 ¡ [V (B) ¡ 0] =

Z R

A

~E ¢ d~s +

Z B

R

~E ¢ d~s

= ¡
Z A

R

~E ¢ d~s +

Z B

R

~E ¢ d~s

and

V (P ) = ¡
Z P

R

~E ¢ d~s (2)

If our system has a finite amount of charge that does not extend out to infinity,
we usually choose the reference point to be at infinity. With this choice, the
potential at a distance r from a point charge q is

V (r) =
kq

r
(3)

However, our line charge extends to infinity, so that choice for R is not available
to us. We can see that by noticing that the log function is infinite as r ! 1
(and also negative infinite as r ! 0). Thus for this field we must choose our
reference point at some finite distance from the line.

Because the potential integral (1) is path independent, we may evaluate the
potential di¤erence using two di¤erent paths C1 and C2 :

V (A) ¡ V (B) =

Z B

A,C1

~E ¢ d~s =

Z B

A,C2

~E ¢ d~s
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and so
Z B

A,C1

~E ¢ d~s ¡
Z B

A,C2

~E ¢ d~s = 0

Z

C=C1¡C2

~E ¢ d~s = 0

where C is the closed path formed by going from A to B along C1 and back to
A along C2.

Again this is a global statement about the electric field ~E, true for any closed
curve C. To get a local statement, we use Stoke’s theorem (Gri¢ths 1.3.5)

Z

C

~E ¢ d~s = 0 =

Z

S

³
~r £ ~E

´
¢ n̂ dA

where S is any surface spanning the curve C. Since this result must be true for
any C (and thus any S), we may conclude that

~r £ ~E = 0 (4)

This is our second Maxwell equation, but unlike Gauss’ law, it is not yet com-
plete. This result is true only for static fields.

Now we have learned something very powerful about static electric fields:
The curl of a gradient is always zero (G 1.2.7) so we may express our electric
field as the gradient of a scalar function ©.

~E = ¡~r© ) ~r £ ~E = 0

The minus sign is conventional. Now if ~E = ¡~r©, then we can compute the
path integral as follows:

Z B

A

~E ¢ d~s =

Z B

A

¡~r© ¢ d~s = ¡
Z B

A

d© = © (A) ¡ © (B)

Comparing this result with (1), we can see that this © is exactly the potential
V that we have already defined!

Note that the relation between ~E and V tells us that V will be an extremum
(~rV = 0) wherever ~E = 0, but V need not be, and in general is not, zero!
Conversely, if V = 0, that fact does not tell us anything about the value of ~E at
that point. We are free to add any constant to V everywhere in space without
changing the value of ~E at all.

Calculating V.
If we know the electric field, we can use the defining integral (1) to calculate

V, as we already did for the infinite line charge case. This method works well
when the field is easy to get and is mathematically simple to express (so that
the integral is not too hard.) Usually if you have enough symmetry to get ~E
using the integral form of Gauss’ law, it is pretty easy to get V this way.
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If the charge distribution is finite, we may model it as a collection of di¤eren-
tial elements (point charges) and use the point charge potential (3). Remember:
when you use this method you are putting the reference point at infinity.

Let’s compute the potential on its axis due to a disk of radius a with uniform
charge density σ.

MODEL We model the disk as a collection of di¤erential rings of width dr.
The potential due to one ring is easy to get, because every element of the ring is
at the same distance from our point P. Then we sum (integrate) the potentials
due to all the rings.

SETUP An element of the ring has length rdφ, thickness dr and charge
dq = σdA = σrdrdφ. Its distance from point P is d =

p
r2 + z2, the same for

each element. The potential due to a ring of radius r is then

dV =

Z 2π

0

k
σrdφ

d
dr =

kσrdrp
r2 + z2

Z 2π

0

dφ =
2πkσrp
r2 + z2

dr

Then the potential at P due to all the rings is

V (P ) =

Z a

0

2πkσrp
r2 + z2

dr = πkσ

Z a2+z2

z

du

u1/2

where u = r2 + z2, du = 2rdr
SOLVE The integral is easy, giving

V (P ) = πkσ 2u1/2
¯̄
¯
a2+z2

z
= πkσ2

³p
a2 + z2 ¡ z

´

ANALYZE The surface charge density has dimensions of charge/length2, so
our answer is k£charge/length, as required. As z ! 1, the answer goes to zero,
which is correct, but not very informative. The important thing is whether it
goes to zero in the right way. We’d expect to get the result for the potential
due to a point charge Q = πa2σ. (This is just RULE 1 again.) Let’s investigate:

V (P ) = πkσ2

Ã
z

r
1 +

a2

z2
¡ z

!
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Now expand the square root using the binomial expansion:

V (P ) = πkσ2

·
z

µ
1 +

1

2

a2

z2
+ ¢ ¢ ¢

¶
¡ z

¸

= πkσ2

·
z

1

2

a2

z2
+ ¢ ¢ ¢

¸
! k

πa2σ

z
as z ! 1

so we get the correct result.
Now we express the integral in its most general form, as we did previously

with ~E. The potential at ~r due to a di¤erential element at ~r0 , with reference
point at infinity, is

dV =
kρ (~r 0) dτ 0

j~r ¡ ~r 0j
and so

V (~r) = k

Z
ρ (~r0) dτ 0

j~r ¡ ~r0j (5)

The final method for getting V is to solve the di¤erential equation that we
can get from Gauss’s Law using the relation of V to ~E.

~r ¢ ~E =
ρ

ε0

~r ¢ (¡rV ) =
ρ

ε0

r2V = ¡ ρ

ε0
(6)

This equation is easy to write but is not always so easy to solve, as we shall see.
We can learn something interesting by looking at a point charge again. What

is its charge density? It is zero everywhere, except at the position of the charge.
For simplicity, let’s put the charge at the origin. Then when we integrate over
any volume including the origin, we must get

q =

Z
ρdV

We can describe this behavior with a quantity called the delta function. (That’s
its name, but it is not a real function at all.) It has the properties

δ (x) = 0 if x 6= 0

δ (x) = 1 if x = 0
Z +1

¡1
δ (x) dx = 1

It is actually defined by a property called the sifting property:

Z +1

¡1
f (x) δ (x) dx = f (0)
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Do you see how this follows from the previous properties of δ (x)? Actually all
we need is that the range of integration include the origin:

Z b

a

f (x) δ (x)dx =

½
f (0) if a < 0 < b
0 otherwise

Now our charge is at x = 0 and y = 0 and z = 0, so we need three delta
functions:

ρ (~r) = qδ (x) δ (y) δ (z) = qδ (~r)

The final expression is a sort of shorthand for the three delta functions in the
middle expression.

Now Poisson’s equation becomes

r2

µ
kq

r

¶
= ¡ q

ε0
δ (~r)

and so it must be true that

r2

µ
1

r

¶
= ¡4πδ (~r) (7)

This is a very useful result that we will want to use often.
Equipotentials
We can use potential to get a visual picture of electric fields by drawing the

surfaces on which V is constant— the equipotential surfaces. Let d~s be a small
displacement along one of these surfaces. Then

dV = ~E ¢ d~s = 0

So d~s must be perpendicular to ~E at that point. Thus:

Equipotential surfaces are perpendicular to electric field lines.

Energy
The potential energy of any system equals the work done to assemble the

system. (LB Chapter 8) So if we want to find the energy stored in an electric
system, we just have to dream up a convenient procedure for putting the system
together. Let’s start with a system of point charges.

We bring in the first charge q1. There are no pre-existing fields, so no force
is needed and no work is done. We put the charge at position ~r1.

Now we bring in the second charge q2. At each point along our path, we have
to exert a force on q2 that is the exact opposite of the force exerted by q1, so
that the net force on q2 is zero.

~Fexer ted by us = ¡~Fexerted by q1 = ¡q2
~E1

Then we can move it at a constant, infinitesimally slow, speed, until we get to
the final position ~r2. The work done is

W2 =

Z P2

1
¡q2

~E1 ¢ d~s = q2V1 (~r2) = q2
kq1

j~r2 ¡~r1j
(8)
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Now we bring in the third charge. This time the force we need is the exact
opposite of the sum of the forces exerted by the first two charges:

W3 =

Z P3

1
¡q3

³
~E1 + ~E2

´
¢ d~s = ¡q3

"Z P3

1
~E1 ¢ d~s +

Z P3

1
~E2 ¢ d~s

#

= q3 [V1 (P3) + V2 (P3)] = k
q3q1

j~r3 ¡~r1j
+ k

q3q2

j~r3 ¡ ~r2j

Now we can see a pattern emerging.

W = W1 + W2 + ¢ ¢ ¢
U = W = kq2

q1

j~r2 ¡ ~r1j
+ k

q3q1

j~r3 ¡ ~r1j
+ k

q3q2

j~r3 ¡ ~r2j
+ ¢ ¢ ¢

= k
NX

i=1

X

j<i

qiqj

j~ri ¡ ~rj j
=

k

2

NX

i=1

NX

j=1,j 6= i

qiqj

j~ri ¡ ~rj j

Another way to think of this is that the energy is stored in pairs of charges, and
we need to sum over all the distinct pairs.

We can also express the result in terms of potential: Let V (~ri) denote the
potential at the position ~ri of charge qi due to all of the other charges, j = 1¡N,
excluding charge qi . Then

U =
1

2

NX

i=1

qiV (~ri)

Now what if we have a continuous distribution of charge instead of a set of point
charges? Well, we model our distribution as a collection of di¤erential elements,
and treat each element as a point charge dq = ρdτ . But now our sum becomes
an integral.

U =
1

2

Z
V (~r)ρ (~r)dτ (9)

(I’m using Gri¢th’s notation τ for volume to avoid confusion with potential V.)
However there’s a catch here. Notice that we have no way to exclude i = j as
we did when summing over point charges. We’ll see what that does in a minute.

We are going to express the energy U in terms of the field alone, so we start
by expressing ρ in terms of ~E using Gauss’ law,

ρ = ε0
~r ¢ ~E

Then

U =
ε0

2

Z
V ~r ¢ ~E dτ

We’d like to use the relation between ~E and V, ~E = ¡~rV, but how? We need
to do an "integation by parts". Note that (G 1.2.6 iii)

~r ¢ (φ~u) = φ~r ¢ ~u + ~u ¢ ~rφ
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We can use this result with φ = V and ~u = ~E to get

V ~r ¢ ~E = ~r ¢
³
V ~E

´
¡ ~E ¢ ~rV = ~r ¢

³
V ~E

´
+ ~E ¢ ~E

Thus

U =
ε0

2

Z h
~r ¢

³
V ~E

´
+ ~E ¢ ~E

i
dτ

Next we can use the divergence theorem to evaluate the first term:
Z

~r ¢
³
V ~E

´
dτ =

I

S1

V ~E ¢ n̂dA

The original integral was over all space, so the bounding surface is "at infinity".
Now provided that the total charge in our system is finite, we can use RULE 1
again to argue that

V ' kQ

r
; ~E ' kQ

r2
r̂

so that on our surface at infinity (which we might as well take to be a sphere
centered at the origin, so that r̂ ¢ n̂ = 1)

I

S1

V ~E ¢ n̂dA = kQ2 lim
r!1

I
1

r3
r2d­ = kQ lim

r!1
1

r

I
d­ = 4πkQ lim

r!1
1

r
= 0

Notice that idealizations like infinite line charges must be excluded here because
they extend all the way to infinity.

The remaining term in our energy expression is

U =
ε0

2

Z
E2dτ =

Z
u dτ

where the lower case u is the electric energy density

u =
ε0

2
E2 (10)

This expression is of the standard form for energies in physics: 1/2 times (con-
stant) times (variable)2. (KE = 1

2mv2, spring PE= 1
2ks2, etc), and, like these

energies, it is always positive. Let’s see what happens if we apply the result to
two point charges. For convenience put the origin on the first charge.

~E (~r) =
kq1

r2
r̂ + kq2

(~r ¡ ~r2)

j~r ¡ ~r2j3

Thus

E2 =

"
kq1

r2
r̂ + kq2

(~r ¡ ~r2)

j~r ¡ ~r2j3

#
¢
"

kq1

r2
r̂ + kq2

(~r ¡ ~r2)

j~r ¡ ~r2j3

#

=
³
k

q1

r2

´2

+

Ã
kq2

j~r ¡~r2j2

!2

+ 2k2 q1q2

r2
r̂ ¢ (~r ¡ ~r2)

j~r ¡ ~r2j3
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The first term here depends only on q1, the second only on q2, and the third on
the product q1q2. The first term gives the self-energy of charge one, and it is
infinite if the charge is really a point.

U1 =
ε0

2

Z
E2

1dτ =
ε0

2

Z 2π

0

Z π

0

Z 1

rmin

³
k

q1

r2

´2

r2 sin θdθdφdr

=
ε0

2
k2q2

1

Z 2π

0

dφ

Z π

0

sin θdθ

Z 1

rmin

1

r2
dr

= 2πε0k
2q2

1

µ
¡1

r

¶¯̄
¯̄
1

rmin

=
k

2

q2
1

rmin
! 1 as rmin ! 0

Similarly the second term is the self energy of charge 2. The third term is the
interaction energy that depends on both of the charges, and it is finite. In fact,
it is identical to the result (8)

U12 =

Z
2k2 q1q2

r2
r̂ ¢ (~r ¡~r2)

j~r ¡~r2j3
dτ = k

q1q2

r12

that we obtained for two point charges. This is the only part of the total energy
that can ever be changed. The self energy is an intrinsic property of each charge
and we cannot get our hands on it. Thus we choose to ignore it, and look only
at the finite, interaction energy. The self energy was introduced because we
could not exclude "i = j" from our integral (9).

This formulation tells us something about where the energy is stored in our
system: it is stored in the field itself and extends throughout the whole of space.

Notice that since the energy is quadratic in the fields, we cannot just add
the energies of di¤erent parts of our system. The interaction terms are very
important. The superposition principle for fields tells us that we can add the
fields due to di¤erent sources:

~E = ~E1 + ~E2 + ~E3 + ¢ ¢ ¢

but the corresponding energy density is proportional to

E2 = E2
1 + E2

2 + ¢ ¢ ¢ + 2~E1 ¢ ~E2 + 2~E1 ¢ ~E3 + ¢ ¢ ¢
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